13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{e^x+a,x≤0}\\{3x-1,x>0}\end{array}\right.$(a∈R),若函數(shù)f(x)在R上有兩個零點,則a的取值范圍是(  )
A.(-∞,-1)B.(-∞,0)C.(-1,0)D.[-1,0)

分析 由分段函數(shù)知當(dāng)x>0時x=$\frac{1}{3}$,從而可得當(dāng)x≤0時,ex+a=0有解,從而解得.

解答 解:當(dāng)x>0時,由3x-1=0解得x=$\frac{1}{3}$,
故當(dāng)x≤0時,ex+a=0有解,
∵0<ex≤1,
∴-1≤a<0,
故選:D.

點評 本題考查了分段函數(shù)的應(yīng)用及分類討論的思想應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}滿足an=3an-1+5,a1=1,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)f(x)的一個原函數(shù)為$\frac{1}{x}$,則f′(x)=$-\frac{1}{{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知圓C的圓心與點P(0,1)關(guān)于直線y=x+1對稱,直線3x+4y+1=0與圓C相交于A,B兩點,且|AB|=4.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l:mx-y+1-m=0(m∈R)與圓C的交點為E、F,求弦EF的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知角α終邊上一點P(-4,3),求$\frac{{sin(α-2π)+cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(π-α)+cos(\frac{11π}{2}-α)sin(\frac{3π}{2}+α)}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若方程$\frac{x^2}{4-k}+\frac{y^2}{k-1}=1$的曲線是橢圓,則k的取值范圍是1<k<4,且k≠$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列函數(shù)中是偶函數(shù),且又在區(qū)間(-∞,0)上是增函數(shù)的是( 。
A.y=x2B.y=x-2C.$y={(\frac{1}{4})^{-|x|}}$D.$y={log_3}{x^{\frac{5}{6}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.一塊石材表示的幾何體的三視圖如圖所示,將該石材切削、打磨,加工成球,則能得到的最大球的半徑等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知全集U=R,集合A={x|-1≤x<2},則集合∁UA={x|x<-1或x≥2}.

查看答案和解析>>

同步練習(xí)冊答案