12.已知函數(shù)$f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$,則下列正確的是( 。
A.圖象關(guān)于原點(diǎn)對(duì)稱,在R上為增函數(shù)B.圖象關(guān)于y軸對(duì)稱,在R上為增函數(shù)
C.圖象關(guān)于原點(diǎn)對(duì)稱,在R上為減函數(shù)D.圖象關(guān)于y軸對(duì)稱,在R上為減函數(shù)

分析 先判斷函數(shù)為奇函數(shù),再根據(jù)奇函數(shù)的性質(zhì)判斷,利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性.

解答 解:由于函數(shù)$f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$的定義域?yàn)镽,關(guān)于原點(diǎn)對(duì)稱,
且滿足f(-x)=$\frac{{e}^{-x}-{e}^{x}}{2}$=-f(x),故函數(shù)為奇函數(shù),
故它的圖象關(guān)于原點(diǎn)對(duì)稱,
∵f′(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$>0,∴f(x)在R上為增函數(shù),
故選:A.

點(diǎn)評(píng) 本題主要考查函數(shù)的奇偶性的判斷方法,函數(shù)的求偶性的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.寫(xiě)出命題“若m>0,則2x2+3x-m=0有實(shí)根”的逆命題,否命題和逆否命題;并判斷逆否命題的真假性,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.(Ⅰ)若雙曲線方程為$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1,求此雙曲線的離心率和漸進(jìn)線方程;
(Ⅱ)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線是y=8,求拋物線的標(biāo)準(zhǔn)方程和焦點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在平面直角坐標(biāo)系中,方程為x2+y2+DX+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對(duì)角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)若四邊形ABCD的面積為40,對(duì)角線AC的長(zhǎng)為8,$\overrightarrow{AB}•\overrightarrow{AD}=0$,且∠ADC為銳角,求圓的方程,并求出B,D的坐標(biāo);
(2)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OH⊥AB,且垂足為H,試用平面解析幾何的研究方法判斷點(diǎn)O、G、H是否共線,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖所示的圓錐的三視圖是( 。
A.主視圖和左視圖是三角形,俯視圖是圓
B.主視圖和左視圖是三角形,俯視圖是圓和圓心
C.主視圖是圓和圓心,俯視圖和左視圖是三角形
D.主視圖和俯視圖是三角形,左視圖是圓和圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.不等式$\frac{{{x^2}+x}}{2x-1}≤1$的解集是{x|x<$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.根據(jù)下列條件,求橢圓的標(biāo)準(zhǔn)方程.
(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-3,0),(3,0),橢圓上任一點(diǎn)P到兩焦點(diǎn)的距離之和等于10;
(2)兩個(gè)焦點(diǎn)的坐標(biāo)分別是(0,-2),(0,2),并且橢圓過(guò)點(diǎn)$(-\frac{3}{2},\frac{5}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知頂點(diǎn)在原點(diǎn)O,準(zhǔn)線方程是y=-1的拋物線與過(guò)點(diǎn)M(0,1)的直線l交于A,B兩點(diǎn),若直線OA和直線OB的斜率之和為1,
(1)求出拋物線的標(biāo)準(zhǔn)方程;
(2)求直線l的方程;
(3)求直線l與拋物線相交所得的弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)=$\frac{1}{x}$+2x在x=1處切線的傾斜角是$\frac{π}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案