分析 (1)根據(jù)橢圓的方程和性質(zhì),建立方程關系即可求出a,b的值.
(2)求出C的坐標,利用F1C⊥AB建立斜率之間的關系,解方程即可求出e的值.
解答 解:(1)∵C的坐標為($\frac{4}{3}$,$\frac{1}{3}$),
∴$\frac{\frac{16}{9}}{{a}^{2}}$+$\frac{\frac{1}{9}}{^{2}}$=1,即$\frac{16}{{a}^{2}}$+$\frac{1}{^{2}}$=9,
∵|BF2|=$\sqrt{2}$,a2=b2+c2,
∴a2=($\sqrt{2}$)2=2,即b2=1,
則橢圓的方程為$\frac{{x}^{2}}{2}$+y2=1.
(2)設F1(-c,0),F(xiàn)2(c,0),
∵B(0,b),
∴直線BF2:y=-$\frac{c}$x+b,代入橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)得
($\frac{1}{{a}^{2}}$+$\frac{1}{{c}^{2}}$)x2-$\frac{2}{c}$x=0,
解得x=0,或x=$\frac{2{a}^{2}c}{{a}^{2}+{c}^{2}}$,
∵A($\frac{2{a}^{2}c}{{a}^{2}+{c}^{2}}$,$\frac{b({c}^{2}-{a}^{2})}{{a}^{2}+{c}^{2}}$),且A,C關于x軸對稱,
∴C($\frac{2{a}^{2}c}{{a}^{2}+{c}^{2}}$,-$\frac{b({c}^{2}-{a}^{2})}{{a}^{2}+{c}^{2}}$),
則${k}_{{F}_{1}C}$=-$\frac{\frac{b({c}^{2}-{a}^{2})}{{a}^{2}+{c}^{2}}}{\frac{2{a}^{2}c}{{a}^{2}+{c}^{2}}+c}$=$\frac{{a}^{2}b-b{c}^{2}}{3{a}^{2}c+{c}^{3}}$,
∵F1C⊥AB,
∴$\frac{{a}^{2}b-b{c}^{2}}{3{a}^{2}c+{c}^{3}}$•(-$\frac{c}$)=-1,
由b2=a2-c2得$\frac{{c}^{2}}{{a}^{2}}$=$\frac{1}{5}$,
即e=$\frac{\sqrt{5}}{5}$.
點評 本題主要考查圓錐曲線的綜合問題,要求熟練掌握橢圓方程的求法以及直線垂直和斜率之間的關系,運算量較大.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [1,2] | B. | (-1,2) | C. | [-1,2] | D. | (-2,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | |a+b|>|a-b| | B. | |a|+|b|>|a-b| | C. | |a-c|≤|a-b|+|b-c| | D. | |a-b|<|a|-|b| |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com