20.設(shè)直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{3}{2}+tsin\frac{5π}{6}\\ y=-tcos\frac{π}{6}\end{array}$(t為參數(shù)),若以直角坐標(biāo)系xOy的O點(diǎn)為極點(diǎn),Ox軸為極軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=$\frac{6cosθ}{{{{sin}^2}θ}}$.
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并指出曲線是什么曲線;
(Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),求|AB|.

分析 (Ⅰ)由ρ=$\frac{6cosθ}{{{{sin}^2}θ}}$得ρsin2θ=6cosθ,ρ2sin2θ=6ρcosθ,可得直角坐標(biāo)方程,可指出曲線是拋物線;
(Ⅱ)利用參數(shù)的幾何意義,即可求|AB|.

解答 解:(Ⅰ)由ρ=$\frac{6cosθ}{{{{sin}^2}θ}}$得ρsin2θ=6cosθ,ρ2sin2θ=6ρcosθ,∴y2=6x.
∴曲線C表示頂點(diǎn)在原點(diǎn),焦點(diǎn)在x上的拋物線…(5分)
(Ⅱ)將$\left\{\begin{array}{l}x=\frac{3}{2}+tsin\frac{5π}{6}\\ y=-tcos\frac{π}{6}\end{array}\right.$化為$\left\{\begin{array}{l}x=\frac{3}{2}+\frac{1}{2}t\\ y=-\frac{{\sqrt{3}}}{2}t\end{array}\right.$,代入y2=6x得t2-4t-12=0(*),
由(*)式解得t1=6,t2=-2,|AB|=|t1-t2|=8.…(10分)

點(diǎn)評 本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,以及利用參數(shù)的幾何意義解決問題.利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知F1,F(xiàn)2分別是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn),B是橢圓的上頂點(diǎn),BF2的延長線交橢圓于點(diǎn)A,過點(diǎn)A垂直于x軸的直線交橢圓于點(diǎn)C.
(1)若點(diǎn)C坐標(biāo)為$(\frac{4}{3},\frac{1}{3})$,且|BF2|=$\sqrt{2}$,求橢圓的方程;
(2)若F1C⊥AB,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若集合M={y|y=2x,x≤1},N={x|$\frac{x-1}{x+1}$≤0},則  N∩M( 。
A.(1-1,]B.(0,1]C.[-1,1]D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知m≥0,函數(shù)f(x)=2|x-1|-|2x+m|的最大值為3.
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若實(shí)數(shù)a,b,c滿足a-2b+c=m,求a2+b2+c2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知向量$\overrightarrow{a}$與$\overrightarrow$的方向相反,且|$\overrightarrow{a}$|=3與|$\overrightarrow$|=4,求|2$\overrightarrow{a}$-$\overrightarrow$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),以A為圓心的圓與雙曲線C的某漸近線交于兩點(diǎn)P,Q.若∠PAQ=60°且$\overrightarrow{OQ}$=4$\overrightarrow{OP}$,則雙曲線C的離心率為(  )
A.$\sqrt{3}$B.$\frac{2\sqrt{13}}{5}$C.$\frac{\sqrt{7}}{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.命題“存在x≥2,使x2≥4”的否定是(  )
A.對任意x≥2,都有x2<4B.對x<2,都有x2≥4
C.存在x≥2,使x2<4D.存在x<2,使x2≥4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x-$\frac{1}{x}+\frac{alnx}{2}$
(Ⅰ)當(dāng)a=-1時,求函數(shù)f(x)在點(diǎn)A(1,0)處的切線方程;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若函數(shù)f(x)有兩個極值點(diǎn)x1和x2,設(shè)過M(x1,f(x1)),N(x2,f(x2))的直線的斜率為k,求證:k>a+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,直線x=4與x軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且|QF|=$\frac{5}{4}$|PQ|.
(Ⅰ)求C的方程;
(Ⅱ)點(diǎn)A(-a,a)(a>0)在拋物線C上,是否存在直線l:y=kx+4與C交于點(diǎn)M,N,使得△MAN是以MN為斜邊的直角三角形?若存在,求出直線l的方程;若不存在說明理由.

查看答案和解析>>

同步練習(xí)冊答案