1.已知等比數(shù)列{an}的公比q=2,前n項(xiàng)和為Sn,若S4=1,則S8=(  )
A.15B.17C.19D.21

分析 根據(jù)在等比數(shù)列{an}中,S4、S8-S4、S12-S8、…構(gòu)成公比為q4的等比數(shù)列,以及S4=1和q=2求出S8-S4,在求出S8的值.

解答 解:∵在等比數(shù)列{an}中,S4、S8-S4、S12-S8、…構(gòu)成公比為q4的等比數(shù)列,
又S4=1,公比q=2,
∴S8-S4=1×24=16,則S8=S4+16=17,
故選:B.

點(diǎn)評 本題考查等比數(shù)列的通項(xiàng)公式,以及等比數(shù)列的性質(zhì)的靈活應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.“θ≠$\frac{π}{3}$”是“tanθ≠$\sqrt{3}$”的( 。
A.必要但非充分條件B.充分但非必要條件
C.充要條件D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知i是虛數(shù)單位,復(fù)數(shù)$\frac{a+i}{1+2i}$為純虛數(shù),則實(shí)數(shù)a等于( 。
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知PA與半圓O切于點(diǎn)A,PO交半圓O于點(diǎn)B、C,AD⊥PO于點(diǎn)D.
(Ⅰ)求證AB平分∠PAD;
(Ⅱ)求證$\frac{PB}{PC}=\frac{DB}{DC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若實(shí)數(shù)x、y滿足sinx-$\sqrt{3}$cosx≤y≤0,-$\frac{2π}{3}$≤x≤$\frac{π}{3}$,則目標(biāo)函數(shù)z=x+y的最小值是( 。
A.-$\frac{2π}{3}$B.-2C.$-\frac{{3\sqrt{3}}}{2}$D.-$\frac{π}{3}$-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知點(diǎn)A(-1,1),B(-4,5),若$\overrightarrow{BC}=3\overrightarrow{BA}$,則點(diǎn)C的坐標(biāo)為( 。
A.(-10,13)B.(9,-12)C.(-5,7)D.(5,-7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow$=(cosx+$\sqrt{3}$sinx,sinx-$\sqrt{3}$cosx),x∈R,則<$\overrightarrow{a}$,$\overrightarrow$>的值是$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,AB邊上的中線CO的長為4,若動(dòng)點(diǎn)P滿足$\overrightarrow{AP}={sin^2}θ•\overrightarrow{AO}+{cos^2}θ•\overrightarrow{AC}$(θ∈R),則$(\overrightarrow{PA}+\overrightarrow{PB})•\overrightarrow{PC}$的最小值是( 。
A.-9B.-8C.4D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一個(gè)焦點(diǎn)與拋物線y2=-4x的焦點(diǎn)相同,且橢圓C上一點(diǎn)與橢圓C的左右焦點(diǎn)F1,F(xiàn)2構(gòu)成三角形的周長為2$\sqrt{2}$+2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m(k,m∈R)與橢圓C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),△AOB的重心G滿足:$\overrightarrow{{F_1}G}$•$\overrightarrow{{F_2}G}$=-$\frac{5}{9}$,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案