分析 把等式左邊展開兩數(shù)差(和)的立方公式,由多項式乘多項式可知展開式中含x的奇數(shù)次方的系數(shù)均為負數(shù),含x的偶數(shù)次方的系數(shù)均為正數(shù),把等式左邊的x取-1求得答案.
解答 解:∵(1-x)3(x2-2x+3)3=(1-3x+3x2-x3)[(x2-2x)3+9(x2-2x)2+27(x2-2x+27)]
=(1-3x+3x2-x3)(x6-6x5+12x4-8x3+9x4-36x3+36x2+27x2-54x+729)
=a0+a1x+a2x2+…+a9x9,
∴由多項式乘多項式可知,展開式中含x的奇數(shù)次方的系數(shù)均為負數(shù),含x的偶數(shù)次方的系數(shù)均為正數(shù),
則|a0|+|a1|+|a2|+…+|a9|=[1-(-1)]3[(-1)2-2(-1)+3]3=1728.
故答案為:1728.
點評 本題考查二項式系數(shù)的性質(zhì),關(guān)鍵是明確展開式中含x的奇數(shù)次方的系數(shù)均為負數(shù),含x的偶數(shù)次方的系數(shù)均為正數(shù),是基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{3}{4}$ | C. | (6-2$\sqrt{5}$) | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=$\sqrt{(x-1)^{2}}$,g(x)=x-1 | B. | f(x)=$\sqrt{{x}^{2}-1}$,g(x)=$\sqrt{x+1}$$•\sqrt{x-1}$ | ||
C. | f(x)=($\sqrt{x-1}$)2,g(x)=$\sqrt{(x-1)^{2}}$ | D. | f(x)=x,g(x)=$\root{3}{{x}^{3}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{{{({-1})}^n}}}{n}$ | B. | $\frac{{{{({-1})}^n}}}{n+1}$ | C. | $\frac{{{{({-1})}^{n+1}}}}{n+1}$ | D. | $\frac{{{{({-1})}^{n+1}}}}{n}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com