函數(shù)f(x)=
x
(x-4)(2x-a)
為奇函數(shù),則實(shí)數(shù)a=
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知中函數(shù)f(x)=
x
(x-4)(2x-a)
為奇函數(shù),可得:f(-x)=-f(x),化簡后,進(jìn)而結(jié)合多項(xiàng)式相等的充要條件,可得實(shí)數(shù)a的值.
解答: 解:由已知中函數(shù)f(x)=
x
(x-4)(2x-a)
為奇函數(shù),
∴f(-x)=-f(x),
-x
(-x-4)(-2x-a)
=-
x
(x-4)(2x-a)

即(-x-4)(-2x-a)=(x-4)(2x-a),
即2x2+(a+8)x+4a=2x2-(a+8)x+4a,
故a+8=0,
即a=-8,
故答案為:-8
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)奇偶性的性質(zhì),熟練掌握函數(shù)奇偶性的定義,是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)y=x2-2|x|+1的奇偶性,并指出它的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M為直線2x-y+3=0上一動(dòng)點(diǎn),A(4,2)為一定點(diǎn),又點(diǎn)P在直線AM上運(yùn)動(dòng),且
|AP|
|PM|
=3,求P點(diǎn)軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

物體運(yùn)動(dòng)方程為S=2t-3,則t=2時(shí)瞬時(shí)速度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(4a-3)x+b-2a,x∈[0,1],若f(x)≤2恒成立,則t=a+b的最大值為(  )
A、
15
4
B、4
C、
13
4
D、
17
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)是定義在R上的增函數(shù),函數(shù)y=f(x-2010)的圖象關(guān)于點(diǎn)(2010,0)對(duì)稱.若實(shí)數(shù)x,y滿足不等式f(x2-6x)+f(y2-8y+24)≤0,則x2+y2的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)市場調(diào)查,某商場的一種商品在過去的一個(gè)月內(nèi)(以30天計(jì))銷售價(jià)格f(t)(元)與時(shí)間t(天)的函數(shù)關(guān)系近似滿足f(t)=100(1+
k
t
)(k為正常數(shù)),日銷售量g(t)(件)與時(shí)間t(天)的函數(shù)關(guān)系近似滿足g(t)=125-|t-25|,且第25天的銷售金額為13000元.
(1)求k的值;
(2)寫出該商品的日銷售金額w(t)關(guān)于時(shí)間t(1≤t≤30,t∈N)的分段函數(shù)關(guān)系式;
(3)試問在過去的一個(gè)月內(nèi)(以30天計(jì))的哪一天銷售金額為12100元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
2x-1
x+1
的值域?yàn)?div id="6meks2e" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>b>c且a+b+c=0,則下列不等式恒成立的是( 。
A、ab>bc
B、ac>bc
C、ab>ac
D、a|b|>|b|c

查看答案和解析>>

同步練習(xí)冊(cè)答案