【題目】設(shè) ,函數(shù)
(1)若 ,求曲線 在點(diǎn) 處的切線方程;
(2)當(dāng)a>2時(shí),求函數(shù) 上的最小值.

【答案】
(1) .

當(dāng) 時(shí), , ,所以曲線 在點(diǎn) 處的切線方程為 ,即 .


(2)令 ,解得 或 .

,則當(dāng) 時(shí), ,函數(shù) 在 上單調(diào)遞減,

所以,當(dāng) 時(shí),函數(shù) 取得最小值,最小值為 .


【解析】函數(shù)的最值點(diǎn)在端點(diǎn)和極值點(diǎn)處取到,利用導(dǎo)數(shù)求出函數(shù)的單調(diào)性,判斷出極值點(diǎn),再把極值和端點(diǎn)的函數(shù)值做比較就可以求得最值點(diǎn)
【考點(diǎn)精析】本題主要考查了函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a∈R,函數(shù)f(x)=log2 +a).
(1)當(dāng)a=1時(shí),解不等式f(x)<0;
(2)若a>0,不等式f(x)<log2(x+ )恒成立,求a的取值范圍;
(3)若關(guān)于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一個(gè)元素,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù)同時(shí)滿足以下條件:①上是減函數(shù),在上是增函數(shù);②是偶函數(shù);③處的切線與直線垂直.

(1)取函數(shù)的解析式;

(2)設(shè),若存在實(shí)數(shù),使,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角△ABC中,a,b,c分別為角A,B,C所對(duì)的邊,且 a=2csinA.
(1)確定角C的大;
(2)若c=3,且△ABC的面積為 ,求a2+b2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形為等腰梯形, ,將沿折起,使得平面平面的中點(diǎn),連接 (如圖2).

(1)求證: ;

(2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)
(1)若 ,求 的單調(diào)區(qū)間;
(2)若 時(shí), 恒成立,求 的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

1)若,求的單調(diào)區(qū)間;

2)若,求的極大值;

3)若,指出的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 是函數(shù)f(x)的導(dǎo)函數(shù),如果 是二次函數(shù), 的圖象開(kāi)口向上,頂點(diǎn)坐標(biāo)為(1, ) ,那么曲線f(x)上任一點(diǎn)處的切線的傾斜角 的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,其導(dǎo)函數(shù)為.

(1)設(shè),若函數(shù)上有且只有一個(gè)零點(diǎn),求的取值范圍;

(2)設(shè),且,點(diǎn)是曲線上的一個(gè)定點(diǎn),是否存在實(shí)數(shù),使得成立?證明你的結(jié)論

查看答案和解析>>

同步練習(xí)冊(cè)答案