分析 ①由已知直線l的斜率k<0,設(shè)直線l的方程為y-4=k(x-1),則A($-\frac{4}{k}+1$,0),B(0,-k+4),由此利用均值定理能求出|OA|+|OB|最小時(shí)直線l的方程.
②由|PA|•|PB|=$\sqrt{(-\frac{4}{k}+1-1)^{2}+{4}^{2}}$•$\sqrt{{1}^{2}+(-k+4-4)^{2}}$,利用均值定理能求出當(dāng)|PA|•|PB|最小時(shí),直線l的方程.
解答 解:①∵直線l過點(diǎn)P(1,4)分別交x軸的正方向和y軸正方向于A、B兩點(diǎn),
∴直線l的斜率k<0,設(shè)直線l的方程為y-4=k(x-1),
則A($-\frac{4}{k}+1$,0),B(0,-k+4),
∴|OA|+|OB|=-$\frac{4}{k}+1+(-k+4)$
=(-$\frac{4}{k}$-k)+5≥2$\sqrt{(-\frac{4}{k})•(-k)}$+5=9,
當(dāng)且僅當(dāng)k=-2時(shí)取等號(hào),∴l(xiāng)的方程為y-4=-2(x-1),
即2x+y-6=0.
②由①知|PA|•|PB|=$\sqrt{(-\frac{4}{k}+1-1)^{2}+{4}^{2}}$•$\sqrt{{1}^{2}+(-k+4-4)^{2}}$
=$\sqrt{\frac{16({k}^{2}+1)^{2}}{{k}^{2}}}$=-$\frac{4}{k}({k}^{2}+1)$=4(-$\frac{1}{k}-k$)≥4$•2\sqrt{(-\frac{1}{k})•(-k)}$=8,
當(dāng)且僅當(dāng)k=-1時(shí)取等號(hào),
∴l(xiāng)的方程為y-4=-(x-1),即x+y-5=0.
點(diǎn)評(píng) 本題考查直線方程的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意均值定理的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{3}$ | B. | $\frac{3}{5}$ | C. | ±$\frac{3}{5}$ | D. | ±$\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②④ | B. | ②④⑤ | C. | ③④⑤ | D. | ②③⑤ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,+∞) | B. | [-1,+∞) | C. | (-1,2)∪(2,+∞) | D. | [-1,2)∩(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com