12.設(shè)α,β是兩個(gè)不同的平面,直線m⊥α,則“m⊥β”是“α∥β”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 根據(jù)充分條件和必要條件的定義結(jié)合空間線面垂直和面面平行的關(guān)系進(jìn)行判斷即可.

解答 解:∵m⊥α,
∴若m⊥β,則同時(shí)垂直體育直線的兩個(gè)平面平行,即α∥β成立,
若α∥β,∵m⊥α,∴m⊥β成立,
即“m⊥β”是“α∥β”的充要條件,
故選:C

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,根據(jù)線面垂直和面面平行的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=mx2-2x+3,對(duì)任意x1,x2∈[-2,+∞)滿足$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,則實(shí)數(shù)m的取值范圍[-$\frac{1}{2}$,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\frac{x}{2x+1}$,數(shù)列{an}滿足a1=f(1),an+1=f(an)(n∈N*).則數(shù)列{an}的通項(xiàng)公式an=$\frac{1}{2n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+4,x>0}\\{0,x=0}\\{{x}^{2}+4x+4,x<0}\end{array}\right.$
(Ⅰ)求f(1),f(-3),f(a+1)的值;
(Ⅱ)求函數(shù)f(x)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在銳角三角形ABC中,角A、B、C的對(duì)邊分別為a、b、c,$\sqrt{3}a=2csinA$.
(1)求角C;
(2)若c=7,且△ABC的面積為$10\sqrt{3}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若偶函數(shù)y=f(x),x∈R,滿足f(x+2)=-f(x),且x∈[0,2]時(shí),f(x)=3-x2,函數(shù)g(x)=sin(|x|),則使方程f(x)=g(x)在[-10,10]內(nèi)根的個(gè)數(shù)為( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,正方體ABCD-A′B′C′D′,直線D′A與DB所成的角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.兩圓C1:x2+y2-4x+3=0和C2:${x^2}+{y^2}+4\sqrt{3}y+3=0$的位置關(guān)系是( 。
A.相離B.相交C.內(nèi)切D.外切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=lnx+a(x2-3x+2),其中a∈R.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a>0,對(duì)?x>1,f(x)≥0成立,求實(shí)數(shù)a的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案