A. | -$\frac{4}{3}$ | B. | -$\frac{3}{4}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
分析 由條件利用同角三角函數(shù)的基本關系,二倍角公式,以及三角函數(shù)在各個象限中的符號求得sin2α、cos2α的值,可得tan2α的值.
解答 解:∵$\frac{cos2α}{sin(α+\frac{π}{4})}$=$\frac{{cos}^{2}α{-sin}^{2}α}{\frac{\sqrt{2}}{2}(cosα+sinα)}$=$\sqrt{2}$(cosα-sinα)=-$\frac{2\sqrt{5}}{5}$,且α∈($\frac{π}{4}$,$\frac{π}{2}$),
∴cosα-sinα=-$\frac{\sqrt{10}}{5}$,
∴平方可得sin2α=$\frac{3}{5}$.
結合2α∈($\frac{π}{2}$,π),可得 cos2α=-$\sqrt{{1-sin}^{2}2α}$=-$\frac{4}{5}$,
則tan2α=$\frac{sin2α}{cos2α}$=-$\frac{3}{4}$,
故選:B.
點評 本題主要考查同角三角函數(shù)的基本關系,二倍角公式,以及三角函數(shù)在各個象限中的符號,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{8}$ | B. | 1-$\frac{π}{8}$ | C. | $\frac{π}{4}$ | D. | 1-$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com