4.△ABC中,內角A、B、C所對的邊分別為a、b、c,且acosB-bcosA=$\frac{1}{2}$c,則$\frac{tanA}{tanB}$=3.

分析 由題意和正弦定理以及和差角的三角函數(shù)公式可得sinAcosB=3sinBcosA,由同角三角函數(shù)基本關系整體代入可得.

解答 解:∵△ABC中acosB-bcosA=$\frac{1}{2}$c,
∴由正弦定理可得sinAcosB-sinBcosA=$\frac{1}{2}$sinC,
∴2sinAcosB-2sinBcosA=sinC=sin(A+B),
∴2sinAcosB-2sinBcosA=sinAcosB+sinBcosA,
∴sinAcosB=3sinBcosA,
∴$\frac{tanA}{tanB}$=$\frac{sinAcosB}{cosAsinB}$=3,
故答案為:3.

點評 本題考查正弦定理解三角形,涉及和差角的三角函數(shù)公式以及同角三角函數(shù)基本關系,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.某幾何體的三視圖如圖所示,則該幾何體的外接球的體積為( 。
A.12πB.4$\sqrt{3}$πC.48πD.32$\sqrt{3}π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知等差數(shù)列2,a2,a3,8,a5的公差是d1,等差數(shù)列-4,b2,b3,b4,12,b6的公差是d2,求$\frac{3co3mqk_{1}}{toae4rt_{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.為了得到函數(shù)y=3sin$\frac{x}{3}$的圖象,只需把函數(shù)y=sinx圖象上所有的點的(  )
A.橫坐標伸長到原來的3倍,縱坐標變?yōu)樵瓉淼?倍
B.橫坐標縮小到原來的$\frac{1}{3}$倍,縱坐標變?yōu)樵瓉淼?\frac{1}{3}$倍
C.橫坐標伸長到原來的$\frac{1}{3}$倍,縱坐標變?yōu)樵瓉淼?倍
D.橫坐標伸長到原來的3倍,縱坐標變?yōu)樵瓉淼?\frac{1}{3}$倍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知角θ的頂點在平面直角坐標系xOy原點O,始邊為x軸正半軸,終邊在直線x-2y=0上,則sin2θ=( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若$\frac{cos2α}{sin(α+\frac{π}{4})}$=-$\frac{2\sqrt{5}}{5}$,且α∈($\frac{π}{4}$,$\frac{π}{2}$),則tan2α的值是(  )
A.-$\frac{4}{3}$B.-$\frac{3}{4}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列說法正確的是( 。
A.命題“p或q”為真命題,則命題p和命題q均為真命題
B.命題“已知A、B為一個三角形的兩內角,若A>B,則sinA>sinB”的逆命題為真命題
C.“若a>b,則2a>2b-1”的否命題為“若a<b,則2a<2b-1”
D.“a=1”是“直線x-ay+1=0與直線x+ay-2=0互相垂直”的充要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.計算:cos25°sin55°-cos65°cos55°=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知A(0,-5),B(0,-1),則以線段AB為直徑的圓的方程是( 。
A.(x+3)2+y2=2B.x2+(y+3)2=4C.(x+3)2+y2=2D.(x-3)2+y2=4

查看答案和解析>>

同步練習冊答案