13.《張丘建算經(jīng)》卷上第22題為“今有女善織,日益功疾,初日織五尺,今一月日織九匹三丈.”其意思為:現(xiàn)有一善于織布的女子,從第2天開始,每天比前一天多織相同量的布,第1天織了5尺布,現(xiàn)在一月(按30天計(jì)算)共織390尺布,記該女子一月中的第n天所織布的尺數(shù)為an,則a14+a15+a16+a17的值為( 。
A.55B.52C.39D.26

分析 設(shè)從第2天開始,每天比前一天多織d尺布,由等差數(shù)列前n項(xiàng)和公式求出d=$\frac{16}{29}$,由此利用等差數(shù)列通項(xiàng)公式能求出a14+a15+a16+a17

解答 解:設(shè)從第2天開始,每天比前一天多織d尺布,
則${S}_{30}=30×5+\frac{30×29}{2}d$=390,
解得d=$\frac{16}{29}$,
∴a14+a15+a16+a17=a1+13d+a1+14d+a1+15d+a1+16d
=4a1+58d
=4×5+58×$\frac{16}{29}$
=52.
故選:B.

點(diǎn)評(píng) 本題考查等差數(shù)列的四項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知f(x)是定義在R上的奇函數(shù),且對(duì)任意的x∈R都有f(x+3)-f(-x)=0,當(dāng)x∈(0,1]時(shí)f(x)=x2-4x,則f(2015)+f(2016)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)函數(shù)f(x)=x2+x-alnx,則a<3是函數(shù)f(x)在[1,+∞)上單調(diào)遞增的充分不必要條件.(選填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知雙曲線$\frac{{x}^{2}}{3}$-y2=1的漸近線上的一點(diǎn)A到其右焦點(diǎn)F的距離等于2,拋物線y2=2px(p>0)過(guò)點(diǎn)A,則該拋物線的方程為( 。
A.y2=2xB.y2=xC.y2=$\frac{1}{2}$xD.y2=$\frac{1}{4}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={x∈N|x(2-x)≥0},B={x|-1≤x≤1},則A∩B=( 。
A.{x|0≤x≤2}B.{x|0<x<2}C.{0,1,2}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知圓C的圓心與雙曲線M:y2-x2=$\frac{1}{2}$的上焦點(diǎn)重合,直線3x+4y+1=0與圓C相交于A,B兩點(diǎn),且|AB|=4.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)O為坐標(biāo)原點(diǎn),D(-2,0),E(2,0)為x軸上的兩點(diǎn),若圓C內(nèi)的動(dòng)點(diǎn)P使得|PD|,|PO|,|PE|成等比數(shù)列,求$\overrightarrow{PD}$•$\overrightarrow{PE}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知正項(xiàng)等比數(shù)列{an}中,a3a5=8,a2=$\frac{\sqrt{2}}{2}$,求:
(1)首項(xiàng)a1和公比q;
(2)該數(shù)列的前5項(xiàng)的和S5的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知命題p:?x∈(0,$\frac{π}{2}$),sinx<tanx,則( 。
A.p是真命題:¬p:?x0∈(0,$\frac{π}{2}$),sinx0>tanx0
B.p是真命題:¬p:?x0∈(0,$\frac{π}{2}$),sinx0<tanx0
C.p是假命題:¬p:?x0∈(0,$\frac{π}{2}$),sinx0<tanx0
D.p是真命題:¬p:?x0∈(0,$\frac{π}{2}$),sinx0≥tanx0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在數(shù)列{an}中,a1=1,an+2+(-1)nan=1,則數(shù)列{an}的前100項(xiàng)之和為1300.

查看答案和解析>>

同步練習(xí)冊(cè)答案