【題目】在直角坐標系中,曲線的參數方程為(為參數),以原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程與曲線的直角坐標方程;
(2)為曲線上任一點,過點作曲線的切線(為切點),求的最小值.
科目:高中數學 來源: 題型:
【題目】關于數列有下列命題:
①數列{an}的前n項和為Sn , 且Sn=an﹣1(a∈R),則{an}為等差或等比數列;
②數列{an}為等差數列,且公差不為零,則數列{an}中不會有am=an(m≠n),
③一個等差數列{an}中,若存在ak+1>ak>0(k∈N*),則對于任意自然數n>k,都有an>0;
④一個等比數列{an}中,若存在自然數k,使akak+1<0,則對于任意n∈N* , 都有anan+1<0,
其中正確命題的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某機床廠今年初用98萬元購進一臺數控機床,并立即投入使用,計劃第一年維修、保養(yǎng)費用12萬元,從第二年開始,每年的維修、保養(yǎng)修費用比上一年增加4萬元,該機床使用后,每年的總收入為50萬元,設使用x年后數控機床的盈利總額y元.
(1)寫出y與x之間的函數關系式;
(2)從第幾年開始,該機床開始盈利?
(3)使用若干年后,對機床的處理有兩種方案:①當年平均盈利額達到最大值時,以30萬元價格處理該機床;②當盈利額達到最大值時,以12萬元價格處理該機床.問哪種方案處理較為合理?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設二次函數f(x)=x2+bx+c(b,c∈R),f(1)=0,且1≤x≤3時,f(x)≤0恒成立,f(x)是區(qū)間[2,+∞)上的增函數.函數f(x)的解析式是;若|f(m)|=|f(n)|,且m<n<2,u=m+n,u的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(指縱、橫直線的交叉點以及三角形的頂點)處都種了一株相同品種的作物.根據歷年的種植經驗,一株該種作物的年收獲量Y(單位:kg)與它的“相近”作物株數X之間的關系如下表所示:
X | 1 | 2 | 3 | 4 |
Y | 51 | 48 | 45 | 42 |
這里,兩株作物“相近”是指它們之間的直線距離不超過1米.
(1)從三角形地塊的內部和邊界上分別隨機選取一株作物,求它們恰好“相近”的概率;
(2)從所種作物中隨機選取一株,求它的年收獲量的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,AB⊥BC側面PAB⊥底面ABCD,PA=AD=AB=2,BC=4.
(1)若PB中點為E.求證:AE∥平面PCD;
(2)若∠PAB=60°,求直線BD與平面PCD所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某花店每天以每枝5元的價格從農場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進16枝玫瑰花,求當天的利潤y(單位:元)關于當天需求量n(單位:枝,n∈N)的函數解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購進16枝玫瑰花,X表示當天的利潤(單位:元),求X的分布列,數學期望及方差;
(ii)若花店計劃一天購進16枝或17枝玫瑰花,你認為應購進16枝還是17枝?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等比數列{an}的各項均為正數,且2a1+3a2=1,a32=9a2a6 .
(1)求數列{an}的通項公式;
(2)設bn=|10+2log3an|,求數列{bn}的前n項和Sn .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com