19.已知關(guān)于x的不等式x2-(4a+2)x+3a2+2a<0(a>-1)的解集中恰好含有3個整數(shù)解,則a的取值范圍是$\frac{1}{3}$≤a<$\frac{2}{3}$.

分析 利用一元二次不等式的解法,解不等式,根據(jù)不等式的解集中恰有3個整數(shù)解,確定解集的取值范圍,即可求解.

解答 解:由x2-(4a+2)x+3a2+2a<0,得(x-3a-2)(x-a)<0,
∵a>-1,∴不等式的解為a<x<3a+2,
-1<a≤0,-1<3a+2<2,整數(shù)解是0,1,不滿足;
0<a<1,3≤3a+2<4,即$\frac{1}{3}$≤a<$\frac{2}{3}$,整數(shù)解是1,2,3,滿足.
a>1,3a+2-a=2a+2>4,不滿足.
綜上,滿足條件的a的取值范圍是$\frac{1}{3}$≤a<$\frac{2}{3}$.
故答案為:{$\frac{1}{3}$≤a<$\frac{2}{3}$}.

點(diǎn)評 本題主要考查一元二次不等式的解法以及應(yīng)用,考查學(xué)生分析問題,解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.解方程:(1)3x-16×3-x-6=0
(2)4${\;}^{\sqrt{x}}$-10•2${\;}^{\sqrt{x}}$+16=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知P,Q分別在∠AOB的兩邊OA,OB上,∠AOB=$\frac{π}{3}$,△POQ的面積為8,則PQ中點(diǎn)M的極坐標(biāo)方程為(  )
A.ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0<θ<$\frac{π}{3}$)B.ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0≤θ<$\frac{π}{3}$)
C.ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0<θ≤$\frac{π}{3}$)D.ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0≤θ≤$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知集合A={f(x)|f(x)=xln(ax)}和B={h(x)|h(x)=$\frac{x}{{e}^{x}}$-$\frac{2}{e}$}的交集有且只有2個子集.
(1)求實(shí)數(shù)a的值;
(2)若對于任意的x∈[1,+∞),f(x)≤m(x2-1)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=2-$\frac{ax+2}{{e}^{x}}$(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性,
(2)若f(x)≥0恒成立,證明:當(dāng)-1<x1<x2時$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>$\frac{2{x}_{1}}{{e}^{{x}_{2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合U={x|x是小于9的正整數(shù)},集合A={1,2,3},集合B={3,4,5,6},則A∩(∁UB)=( 。
A.{1,2,3}B.{1,2}C.{1,3}D.{2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知三棱錐S-ABC所有頂點(diǎn)都在球O的球面上,且SC⊥平面ABC,若AC=AB=1,SC=2,∠BAC=120°,則球D的表面積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知向量$\overrightarrow{a}$=(x,1,2),$\overrightarrow$=(1,y,-2),$\overrightarrow{c}$=(3,1,z),$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$⊥$\overrightarrow{c}$.
(1)求向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$;
(2)求向量($\overrightarrow{a}$+$\overrightarrow{c}$)與($\overrightarrow$+$\overrightarrow{c}$)所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.下表提供了某新生嬰兒成長過程中時間x(月)與相應(yīng)的體重y(公斤)的幾組對照數(shù)據(jù)
(1)如y與x具有較好的線性關(guān)系,請根據(jù)表中提供的數(shù)據(jù),求出線性回歸方程:$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)由此推測當(dāng)嬰兒生長滿五個月時的體重為多少?
(參考公式和數(shù)據(jù):$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n•{\overline{x}}^{2}}$  $\widehat{a}$=$\widehat{y}$-$\widehat$$\overline{x}$,$\sum_{i=1}^{n}{x}_{i}{y}_{i}=27.5$)
 x0123
 y33.54.55

查看答案和解析>>

同步練習(xí)冊答案