19.已知P,Q分別在∠AOB的兩邊OA,OB上,∠AOB=$\frac{π}{3}$,△POQ的面積為8,則PQ中點(diǎn)M的極坐標(biāo)方程為( 。
A.ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0<θ<$\frac{π}{3}$)B.ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0≤θ<$\frac{π}{3}$)
C.ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0<θ≤$\frac{π}{3}$)D.ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0≤θ≤$\frac{π}{3}$)

分析 根據(jù)P,O,Q三點(diǎn)不共線可判斷出θ的范圍.

解答 解:∵P,O,Q三點(diǎn)不共線,∴M不能落在OA上,也不能落在OB上,
∴0<θ<$\frac{π}{3}$.
故選:A.

點(diǎn)評(píng) 本題考查了極坐標(biāo)方程的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.兩平行直線3x+4y+5=0與6x+ay+30=0的距離為d,則a+d=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.化簡cos2($\frac{x}{2}$-$\frac{7π}{8}$)-cos2($\frac{x}{2}$+$\frac{7π}{8}$)的結(jié)果為( 。
A.$\frac{\sqrt{2}}{2}$cosxB.-$\frac{\sqrt{2}}{2}$cosxC.-$\frac{\sqrt{2}}{2}$sinxD.$\frac{\sqrt{2}}{2}$sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求下列函數(shù)的導(dǎo)敦:
(1)y=$\frac{3{x}^{2}-x\sqrt{x}+5\sqrt{x}-9}{\sqrt{x}}$;
(2)y=$\frac{{x}^{4}+\sqrt{x}+cosx}{{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.將下列各角由弧度轉(zhuǎn)換為角度:
(1)$\frac{8π}{3}$;
(2)-$\frac{5π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在復(fù)數(shù)集中因式分解x4+3x2-10=(x$+\sqrt{2}$i)(x-$\sqrt{2}i$)(x+$\sqrt{5}$)(x-$\sqrt{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如果一對(duì)兔子每月能生一對(duì)小兔子(一雄一雌),而每1對(duì)小兔子在它出生后的第三個(gè)月里,又能生1對(duì)小兔子,假定在不發(fā)生死亡的情況下,有1對(duì)初生的小兔子開始,n個(gè)月后會(huì)有an對(duì)兔子(a1=1,a2=1,a3=2,a4=3,a5=5…),設(shè)bn=$\frac{{a}_{n+1}}{{a}_{n}{a}_{n+2}}$,數(shù)列{bn}的前n項(xiàng)和Sn,則Sn與2的大小關(guān)系是Sn<2.(填“>”、“<”或“=”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知關(guān)于x的不等式x2-(4a+2)x+3a2+2a<0(a>-1)的解集中恰好含有3個(gè)整數(shù)解,則a的取值范圍是$\frac{1}{3}$≤a<$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=x2+x-2,x∈[-1,6],若在其定義域內(nèi)任取一數(shù)x0使得f(x0)≤0概率是(  )
A.$\frac{2}{7}$B.$\frac{3}{7}$C.$\frac{4}{7}$D.$\frac{5}{7}$

查看答案和解析>>

同步練習(xí)冊(cè)答案