15.現(xiàn)在陽臺種菜成為部分人的愛好,如圖所示,一塊種菜的小菜地一面靠墻(墻長度為1.2米),另外三面由總長為2米的柵欄圍成,設(shè)寬為x米.面積為y平方米.
(1)求菜地的另一邊的長(用x表示);
(2)求y與x之間的函數(shù)關(guān)系,并寫出自變量x的取值范圍;
(3)當(dāng)x為何值時(shí),菜地的面積最大?并求出最大值.

分析 (1)根據(jù)柵欄總長為2米,寬為x米,可得另一邊;
(2)結(jié)合矩形面積公式,可得函數(shù)解析式,再由墻長度為1.2米,長不小于寬,可得自變量x的取值范圍;
(3)結(jié)合二次函數(shù)的圖象和性質(zhì),可得函數(shù)的最大值點(diǎn),代入可得函數(shù)的最大值.

解答 解:(1)∵柵欄總長為2米,寬為x米時(shí),
另一邊的長為2-2x,
(2)小菜地面積y=x(2-2x)=-2x2+2x,
由0<x<2-2x≤1.2得:x∈[$\frac{2}{5}$,$\frac{2}{3}$)
(3)∵函數(shù)y=-2x2+2x的圖象是開口朝下,且以直線x=$\frac{1}{2}$為對稱軸的拋物線,
幫當(dāng)x=$\frac{1}{2}$時(shí),函數(shù)取最大值$\frac{1}{2}$.

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)模型的選擇與應(yīng)用,二次函數(shù)的圖象和性質(zhì),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1}{3}$x3-x2+ax-a,若f(x)只有一個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知三條直線l1:2x-y+1=0,l2:x+y-4=0,l3:x+ay+2=0不能圍成三角形,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)對任意a,b∈R,都有f(a+b)+f(a-b)=2f(a)•f(b),且f(0)≠0.
(Ⅰ) 求f(0);
(Ⅱ)證明:函數(shù)f(x)為偶函數(shù);
(Ⅲ) 存在正數(shù)m,使得f(m)=0,求滿足f(x+T)=f(x)的1個(gè)T值(T≠0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知x,y滿足-$\frac{π}{2}$<y<0$<x<\frac{π}{2}$,且cos($\frac{π}{4}$+x)=$\frac{1}{3}$,cos($\frac{π}{4}$-$\frac{y}{2}$)=$\frac{\sqrt{3}}{3}$,則cos(x+$\frac{y}{2}$)=$\frac{5\sqrt{3}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.解關(guān)于x的不等式:12x2-ax-a2<0(a∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.計(jì)算:
(1)${0.04}^{-\frac{1}{2}}$-(-0.3)°+${16}^{\frac{3}{4}}$=12
(2)2log23+log43=$\frac{5}{2}$log23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是不共線向量,$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$,$\overrightarrow$=6$\overrightarrow{{e}_{1}}$-8$\overrightarrow{{e}_{2}}$,問$\overrightarrow{a}$與$\overrightarrow$是否共線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,$\overrightarrow{AB}$=(2cosα,2sinα),$\overrightarrow{BC}$=(5cosβ,5sinβ),若$\overrightarrow{AB}$$•\overrightarrow{BC}$=-5,則|$\overrightarrow{AC}$|=( 。
A.4B.$\sqrt{10}$C.$\sqrt{19}$D.25

查看答案和解析>>

同步練習(xí)冊答案