分析 根據(jù)奇函數(shù)的定義,可得f(-x)=-f(x),結(jié)合函數(shù)解析和對數(shù)的運(yùn)算性質(zhì),可得答案.
解答 解:∵函數(shù)$f(x)=lg(x+\sqrt{1+m{x^2}})$是奇函數(shù),
∴f(-x)=-f(x),
即$lg(-x+\sqrt{1+m{x}^{2}})$=-$lg(x+\sqrt{1+m{x}^{2}})$,
即$lg(-x+\sqrt{1+m{x}^{2}})$+$lg(x+\sqrt{1+m{x}^{2}})$=lg[$(-x+\sqrt{1+m{x}^{2}})$$(x+\sqrt{1+m{x}^{2}})$]=lg(1+(m-1)x2)=0,
即1+(m-1)x2=1,
故m=1,
故答案為:1
點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)奇偶性的定義,對數(shù)的運(yùn)算性質(zhì),難度中檔.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {4} | B. | {3,5,7,8} | C. | {3,4,5,7,8} | D. | {3,4,4,5,7,8} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 150° | B. | 120° | C. | 90° | D. | 135° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com