5.函數(shù)$y=\frac{{\sqrt{1-{x^2}}}}{{2{x^2}-3x-2}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,1]B.[-1,1]C.[1,2)∪(2,+∞)D.$[{-1,-\frac{1}{2}})∪({-\frac{1}{2},1}]$

分析 由函數(shù)$y=\frac{{\sqrt{1-{x^2}}}}{{2{x^2}-3x-2}}$列出不等式組$\left\{\begin{array}{l}{1{-x}^{2}≥0}\\{{2x}^{2}-3x-2≠0}\end{array}\right.$,求出解集即可.

解答 解:由函數(shù)$y=\frac{{\sqrt{1-{x^2}}}}{{2{x^2}-3x-2}}$,
得$\left\{\begin{array}{l}{1{-x}^{2}≥0}\\{{2x}^{2}-3x-2≠0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{-1≤x≤1}\\{x≠2且x≠-\frac{1}{2}}\end{array}\right.$,
即-1≤x≤1且x≠-$\frac{1}{2}$;
所以函數(shù)y的定義域?yàn)閇-1,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,1].
故選:D.

點(diǎn)評(píng) 本題考查了根據(jù)函數(shù)解析式求定義域的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若a2+a3+a4=3,則S5=( 。
A.5B.7C.9D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率$e=\frac{{\sqrt{3}}}{2}$,過橢圓的左焦點(diǎn)F且傾斜角為30°的直線與圓x2+y2=b2相交所得弦的長度為1.
(I)求橢圓E的方程;
(Ⅱ)若動(dòng)直線l交橢圓E于不同兩點(diǎn)M(x1,y1),N(x2,y2),設(shè)$\overrightarrow{OP}$=(bx1,ay1),$\overrightarrow{OQ}$=((bx2,ay2),O為坐標(biāo)原點(diǎn).當(dāng)以線段PQ為直徑的圓恰好過點(diǎn)O時(shí),求證:△MON的面積為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某企業(yè)對(duì)其生產(chǎn)的一批產(chǎn)品進(jìn)行檢測,得出每件產(chǎn)品中某種物質(zhì)含量(單位:克)的頻率分布直方圖如圖所示.
(1)估計(jì)產(chǎn)品中該物質(zhì)含量的中位數(shù)及平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(2)規(guī)定產(chǎn)品的級(jí)別如表:
產(chǎn)品級(jí)別CBA
某種物質(zhì)含量范圍[60,70)[70,80)[80,90)
若生產(chǎn)1件A級(jí)品可獲利潤100元,生產(chǎn)1件B級(jí)品可獲利潤50元,生產(chǎn)1件C級(jí)品虧損50元.現(xiàn)管理人員從三個(gè)等級(jí)的產(chǎn)品中采用分層抽樣的方式抽取10件產(chǎn)品,試用樣本估計(jì)生產(chǎn)1件該產(chǎn)品的平均利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.${∫}_{-1}^{1}$(x2+$\sqrt{1-{x}^{2}}$)dx=$\frac{π}{2}$$+\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.復(fù)數(shù)z滿足z•$\overline{z}$+z+$\overline{z}$=17,則|z+2-i|的最小值為( 。
A.2$\sqrt{2}$B.3$\sqrt{2}$C.4$\sqrt{2}$D.5$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,三棱錐P-ABC中,△ABC是正三角形,PC⊥平面ABC,PC=AC=2,E為AC中點(diǎn),EF⊥AP,垂足為F.
(I)求證:AP⊥FB;
(Ⅱ)求多面體PFBCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示的幾何體中,四邊形ABCD為梯形,AD∥BC,AB⊥平面BEC,EC⊥CB.已知BC=2AD=2AB=2.
(I)證明:BD⊥平面DEC;
(Ⅱ)若EC=1,求AD與面BED所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.sin1680°+tan2010°的值為(  )
A.$\frac{1}{6}$B.$\frac{\sqrt{3}}{6}$C.-$\frac{1}{6}$D.-$\frac{\sqrt{3}}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案