15.sin1680°+tan2010°的值為(  )
A.$\frac{1}{6}$B.$\frac{\sqrt{3}}{6}$C.-$\frac{1}{6}$D.-$\frac{\sqrt{3}}{6}$

分析 原式中的角度變形后,利用誘導(dǎo)公式化簡(jiǎn)即可求出值.

解答 解:∵sin1680°=sin(4×360°+180°+60°)=-sin60°=-$\frac{\sqrt{3}}{2}$,
tan2010°=tan(11×180°+30°)=tan30°=$\frac{\sqrt{3}}{3}$.
∴sin1680°+tan2010°=-$\frac{\sqrt{3}}{6}$.
故選:D.

點(diǎn)評(píng) 此題考查了運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)$y=\frac{{\sqrt{1-{x^2}}}}{{2{x^2}-3x-2}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,1]B.[-1,1]C.[1,2)∪(2,+∞)D.$[{-1,-\frac{1}{2}})∪({-\frac{1}{2},1}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.①直線a與平面α的關(guān)系可分為a在平面α外或a在平面α內(nèi)兩類(lèi);
②過(guò)兩異面直線中的一條且與另一條直線平行的平面必存在;
③與一個(gè)平面內(nèi)的一條直線平行的直線,必與此平面平行;
④兩平行線中有一條與平面α平行,則另一條也與平面α平行.
上述命題中其中真命題的序號(hào)是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)$\overrightarrow{i}$=(1,0),$\overrightarrow{j}$=(0,1),$\overrightarrow{a}$=2$\overrightarrow{i}$+3$\overrightarrow{j}$,$\overrightarrow$=k$\overrightarrow{i}$-4$\overrightarrow{j}$,若$\overrightarrow{a}$⊥$\overrightarrow$,則實(shí)數(shù)k的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知sinθ與cosθ是方程6x2-5x+m=0的兩根,求m和sin3θ+cos3θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.記等差數(shù)列的前n項(xiàng)和為Sn,若S2=4,S4=20,則S6等于48.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知二次函數(shù)f(x),當(dāng)x=2時(shí),函數(shù)有最大值1,且圖象被x軸所截的兩點(diǎn)間的距離為6,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若$\underset{lim}{t→0}$$\frac{f({x}_{0}-3t)-f({x}_{0})}{t}$=3,則f′(x0)=( 。
A.-1B.1C.-9D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在平面上有A、B、C三點(diǎn),滿(mǎn)足|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=1,|$\overrightarrow{BC}$|=$\sqrt{3}$,則$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{BC}$•$\overrightarrow{CA}$+$\overrightarrow{CA}$•$\overrightarrow{AB}$的值為( 。
A.4B.-4C.-$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案