7.四位男演員與五位女演員(包含女演員甲)排成一排拍照,其中四位男演員互不相鄰,且女演員甲不站兩側(cè)的排法數(shù)為( 。
A.${A}_{5}^{5}$${A}_{6}^{4}$-2${A}_{4}^{4}$${A}_{5}^{4}$B.${A}_{5}^{5}$${A}_{4}^{4}$-${A}_{4}^{4}$${A}_{5}^{4}$
C.${A}_{6}^{5}$${A}_{5}^{4}$-2${A}_{4}^{4}$${A}_{4}^{4}$D.${A}_{5}^{5}$${A}_{5}^{4}$-${A}_{4}^{4}$${A}_{4}^{4}$

分析 由題意,利用間接法,五位女演員全排,有${A}_{5}^{5}$${A}_{6}^{4}$種方法,插入四位男演員,女演員甲站兩側(cè),有2${A}_{4}^{4}$${A}_{5}^{4}$,即可求出不同的排法.

解答 解:由題意,利用排除法,五位女演員全排,有${A}_{5}^{5}$${A}_{6}^{4}$種方法,
插入四位男演員,女演員甲站兩側(cè),有2${A}_{4}^{4}$${A}_{5}^{4}$種方法,
所以不同的排法有${A}_{5}^{5}$${A}_{6}^{4}$-2${A}_{4}^{4}$${A}_{5}^{4}$種.
故選:A.

點(diǎn)評 本題考查利用排列知識(shí)解決實(shí)際問題,考查學(xué)生的計(jì)算能力,正確運(yùn)用間接法是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知cos($\frac{π}{6}$-x)=$\frac{\sqrt{6}}{3}$,則cos($\frac{2}{3}$π+2x)=( 。
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在(x-$\frac{a}{x}$)5的展開式中x3的系數(shù)等于5,則該展開式中二項(xiàng)式系數(shù)最大的項(xiàng)的系數(shù)為( 。
A.20B.-10C.-10,10D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.i為虛數(shù)單位,復(fù)數(shù)$\frac{2+i}{1-i}$=(  )
A.$\frac{1}{2}$+$\frac{3}{2}$iB.$\frac{3}{2}$+$\frac{1}{2}i$C.$\frac{3}{2}$+$\frac{3}{2}$iD.$\frac{3}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=(x-k)ex(k∈R).
(1)若k=0,求函數(shù)f(x)的極值;
(2)求函數(shù)g(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若復(fù)數(shù)z=$\frac{3+2i}{1-i}$(i為虛數(shù)單位),則z的共軛復(fù)數(shù)$\overline{z}$為( 。
A.$\frac{1}{2}$+$\frac{5}{2}$iB.$\frac{1}{2}$-$\frac{5}{2}$iC.$\frac{1}{2}$+2iD.$\frac{1}{2}$-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)=ax2+bx+1(a>0,b∈R)的最小值為-a,f(x)=0的兩個(gè)實(shí)根為x1,x2,P={x|f(x)<0,x∈R}
(1)求證:|x1-x2|=2;
(2)若g(x)=f(x)+2x在x∈P上存在最小值,求a的取值范圍;
(3)若0<x1<2,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知a,b,c分別是銳角△ABC的三個(gè)內(nèi)角A,B,C的對邊,a=1,b=2cosC,sinCcosA-sin($\frac{π}{4}$-B)sin($\frac{π}{4}$+B)=0,則△ABC的內(nèi)角B的大小為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)是奇函數(shù),且x≥0時(shí),f(x)=log2(x+2)+a,則f(-2)的值為-1.

查看答案和解析>>

同步練習(xí)冊答案