解不等式:x4+x3-x-1≤0.
考點:其他不等式的解法
專題:不等式的解法及應用
分析:先根據(jù)因式分解,原不等式可化為(x+1)(x-1)(x2+x+1)≤0,再根據(jù)x2+x+1>0恒成立,得到不等式為(x+1)(x-1)≤0,解得即可.
解答: 解:∵x4+x3-x-1=(x4-1)+(x3-x)=(x2+1)(x2-1)+x(x2-1)
=(x2-1)(x2+x+1)=(x+1)(x-1)(x2+x+1),
原不等式可化為(x+1)(x-1)(x2+x+1)≤0,
∵x2+x+1>0恒成立,
∴(x+1)(x-1)≤0,
解得-1≤x≤1
點評:本題考查了因式分解的方法化簡不等式,關鍵是能判斷x2+x+1>0恒成立,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在四棱錐P-ABCD中,∠ACD=90°,∠BAC=∠CAD,PA⊥平面ABCD,E為PD的中點.
(1)求證:平面PAC⊥平面PCD;
(2)求證:CE∥平面PAB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為(0,+∞)的函數(shù)f(x)滿足:
(1)對任意x∈(0,+∞),恒有f(2x)=f(x)成立;
(2)當x∈(1,2]時f(x)=2-x.給出結論如下:
①對任意m∈Z,有f(2m)=0
②當x∈(2,4]時,有f(x)=4-2x;
③函數(shù)f(x)的值域為[0,1);
④方程f(x)=log3x的實根個數(shù)為3;
⑤函數(shù)f(x)-
1
2
在區(qū)間(1,+∞)上的零點由小到大組成一個數(shù)列{an}.則{an}的通項公式為an=3•2n-2
其中所有正確的結論的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的平面四邊形ABCD中,△ABD是以A為直角頂點的等腰直角三角形,△BCD為正三角形,且BD=4,AC與BD交于點O(如圖甲).現(xiàn)沿BD將平面四邊形ABCD折成三棱錐A-BCD,使得折起后∠AOC=θ(0<θ<π)(如圖乙).
(Ⅰ)證明:不論θ在(0,π)內(nèi)為何值,均有AC⊥BD;
(Ⅱ)當三棱錐A-BCD的體積為
8
3
3
時,求二面角B-AD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解方程:
x
+
x+2
+
2x+4
=2x-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若等邊△ABC的邊長為2,平面內(nèi)一點M滿足
CM
=
1
3
CB
+
1
2
CA
,求
MA
MB

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinθ=-
12
13
,θ是第三象限角,求cos(
π
6
+θ)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線C:
x2
2
-y2=1的左、右頂點分別為A1、A2,垂直子x軸的直線m與雙曲線C交于不同的兩點P、Q.
(Ⅰ)求直線A1P與直線A2Q的交點M的軌跡E的方程;
(Ⅱ)設點T(2,0).過點F(1,0)作直線l與(Ⅰ)中的軌跡E交于不同的兩點名A、B,設
FA
FB
,若λ∈[-2,-1],求|
TA
+
TB
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知l線的方程為:(2m+1)x+(m+1)y-7m-4=0(m∈R),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ2-20=2ρcosθ+4ρsinθ,則直線l被圓C截得的線段的最短長度為
 

查看答案和解析>>

同步練習冊答案