5.計(jì)算cos20°sin50°sin170°=$\frac{1}{8}$.

分析 將式子全部轉(zhuǎn)化為余弦,然后分子,分母同乘sin20°,使用二倍角公式化簡(jiǎn)即可得出答案.

解答 解:cos20°sin50°sin170°=cos20°cos40°cos80°
=$\frac{2sin20°cos20°cos40°cos80°}{2sin20°}$
=$\frac{sin40°cos40°cos80°}{2sin20°}$
=$\frac{sin80°cos80°}{4sin20°}$
=$\frac{sin160°}{8sin20°}$
=$\frac{sin20°}{8sin20°}$
=$\frac{1}{8}$.
故答案為:$\frac{1}{8}$.

點(diǎn)評(píng) 本題考查了三角函數(shù)的恒等變換,二倍角公式的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=exsinx,則f′($\frac{π}{2}$)=${e}^{\frac{π}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若集合M={x|y=$\sqrt{x-{x^2}}$},集合N={y|y=sinx},則M∩N=(  )
A.[-1,0]B.[-1,1]C.[0,1]D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某學(xué)校為倡導(dǎo)全體學(xué)生為特困學(xué)生捐款,舉行“一元錢(qián),一片心,誠(chéng)信用水”活動(dòng),學(xué)生在購(gòu)水處每領(lǐng)取一瓶礦泉水,便自覺(jué)向捐款箱中至少投入一元錢(qián).現(xiàn)統(tǒng)計(jì)了連續(xù)5天的售出和收益情況,如表:
售出水量x(單位:箱)76656
收益y(單位:元)165142148125150
(Ⅰ)求y關(guān)于x的線性回歸方程;
(Ⅱ)預(yù)測(cè)售出8箱水的收益是多少元?
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,
參考數(shù)據(jù):7×165+6×142+6×148+5×125+6×150=4420.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)在正項(xiàng)數(shù)列{an}中,a12+$\frac{{{a}_{2}}^{2}}{{2}^{2}}$+$\frac{{{a}_{3}}^{2}}{{3}^{2}}$+…+$\frac{{{a}_{n}}^{2}}{{n}^{2}}$=4n-3,則數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前2n項(xiàng)和為$\frac{n}{4n+2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.先化簡(jiǎn):$\sqrt{x+3}$-2$\sqrt{x}$-$\frac{1}{\sqrt{x+3}+\sqrt{x}}$,再計(jì)算當(dāng)x=1時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知{x|ax2+bx+c≥0}=[α,β],{x|ax2+(b-1)x+c≥0}=[p,q],若那么α、β、p、q中負(fù)數(shù)的個(gè)數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,且a1+a2=4,$\frac{2{S}_{n+1}+1}{2{S}_{n}+1}$=$\frac{{a}_{2}}{{a}_{1}}$=c(c>0,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=anlog3an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知{an}是一個(gè)公差大于0的等差數(shù)列,且滿足a1+a3=8,a2+a4=12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}和等比數(shù)列{bn}滿足b1=a1-1,b3=a3+3,(n為正整數(shù))且{bn}的公比q>0,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案