18.設(shè)z=ax+y中變量x、y滿足條件$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,若目標(biāo)函數(shù)z僅在(5,2)處取得最大值,則a的取值范圍是( 。
A.(-∞,-$\frac{3}{5}$)B.($\frac{1}{4}$,$\frac{3}{5}$)C.($\frac{1}{4}$,+∞)D.($\frac{3}{5}$,+∞)

分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),確定目標(biāo)取最優(yōu)解的條件,即可求出a的取值范圍.

解答 解:作出不等式對(duì)應(yīng)的平面區(qū)域,
由z=ax+y得y=-ax+z,
要使目標(biāo)函數(shù)z=ax+y僅在點(diǎn)A(5,2)處取得最大值,
則陰影部分區(qū)域在直線y=-ax+z的下方,
∴-a<0,
即a>0,即目標(biāo)函數(shù)的斜率k,滿足k<kAB=-$\frac{3}{5}$,
即-a<-$\frac{3}{5}$,
則a>$\frac{3}{5}$,
即a的取值范圍是($\frac{3}{5}$,+∞),
故選:D

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.根據(jù)條件目標(biāo)函數(shù)z=ax+y僅在點(diǎn)(5,2)處取得最大值,確定直線的位置是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列結(jié)論:(1)若y=cosx,則y′=-sinx
(2)若y=$\frac{1}{{\sqrt{x}}}$,則y′=$\frac{1}{{2x\sqrt{x}}}$
(3)若f(x)=$\frac{1}{x^2}$,則f′(3)=-$\frac{2}{27}$
其中正確的命題的個(gè)數(shù)為( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知向量$\overrightarrow{OA}=({3,-4}),\overrightarrow{OB}=({6,-3}),\overrightarrow{OC}=({2,-6})$.
(Ⅰ)若四邊形ABCD為平行四邊形,求D點(diǎn)坐標(biāo);
(Ⅱ)若$\overrightarrow{OA}=x\overrightarrow{OB}+y\overrightarrow{OC}$,求實(shí)數(shù)$\frac{y}{x}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.方程2sin(x+$\frac{π}{3}$)=1在區(qū)間[0,2π]上的所有解的和等于$\frac{7π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}中,a1=3,a2=6,an+2=an+1-an,則a2015=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,在△ABC和△AEF中,B是EF的中點(diǎn),AB=EF=1,CA=CB=2,若$\overrightarrow{AB}$•$\overrightarrow{AE}$+
$\overrightarrow{AC}$•$\overrightarrow{AF}$=2,則$\overrightarrow{EF}$與$\overrightarrow{BC}$的夾角的余弦值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若兩點(diǎn)P(-1,3)、Q(2,b)的距離為$\sqrt{13}$,則b的值為( 。
A.2B.2或4C.1或5D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在棱長(zhǎng)為4的正方體ABCD-A1B1C1D1中,設(shè)E是棱CC1的中點(diǎn).
(1)求證:BD⊥AE;
(2)求證:AC∥平面B1DE;
(3)求三棱錐A-B1DE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an},{bn}滿足${a_1}=\frac{1}{4},{a_n}+{b_n}=1,{b_{n+1}}=\frac{b_n}{{(1-{a_n})(1+{a_n})}}$.
(Ⅰ)求b1,b2,b3,b4;
(Ⅱ)設(shè)${c_n}=\frac{1}{{{b_n}-1}}$,證明數(shù)列{cn}是等差數(shù)列;
(Ⅲ)設(shè)Sn=a1a2+a2a3+a3a4+…+anan+1,不等式4aSn<bn恒成立時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案