6.己知A、F分別為雙曲線C的左頂點(diǎn)和右焦點(diǎn),點(diǎn)D在C上,△AFD是等腰直角三角形,且∠AFD=90°,則C的離心率為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{2}$+1

分析 由題意,|AF|=|DF|,可得c+a=$\frac{^{2}}{a}$,即可求出C的離心率.

解答 解:由題意,|AF|=|DF|
∴c+a=$\frac{^{2}}{a}$,
∴e2-e-2=0,
∵e>1,∴e=2,
故選:C.

點(diǎn)評(píng) 本題考查雙曲線C的離心率,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知等比數(shù)列{an}的首項(xiàng)為1,公比為q,a4,a3,a5依次成等差數(shù)列.
(Ⅰ)求q的值;
(Ⅱ)當(dāng)q<0時(shí),求數(shù)列{nan}的前n項(xiàng)和Sn
(Ⅲ)當(dāng)q>0時(shí),求證:$\sum_{i=1}^{n}$$\frac{{a}_{i}^{2}}{(2i-\frac{1}{3})^{2}-{a}_{i}^{2}}$<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知圓C的方程為x2+y2-4x=0,過(guò)點(diǎn)A(4,0)斜率為k的直線l與圓交于另一點(diǎn)B,且AB=2$\sqrt{2}$.
(1)求直線l的方程;
(2)k>0時(shí),求過(guò)點(diǎn)B且與圓C相切的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知方程x2+y2-4(m+1)x+2(1-m2)y+m4-1=0表示一個(gè)圓.
(1)求m的取值范圍;
(2)若直線l:x+y=0與圓交于A、B兩點(diǎn),圓心到直線l的距離為2$\sqrt{2}$,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知Rt△ABC,斜邊BC?α,點(diǎn)A∉α,AO⊥α,O為垂足,∠ABO=30°,∠ACO=45°,則二面角A-BC-O的大小為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=|x-1|+|x-2|.
(1)用分段函數(shù)的形式表示該函數(shù),并在所給的坐標(biāo)系中畫(huà)出該函數(shù)的圖象;
(2)寫(xiě)出該函數(shù)的值域、單調(diào)區(qū)間(不要求證明);
(3)求不等式f(x)≤3的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在△ABC中,己知$\overrightarrow{AB}$•$\overrightarrow{AC}$=9,b=ccosA,又△ABC的面積為6.
(Ⅰ)求△ABC的三邊長(zhǎng);
(Ⅱ)若D為BC邊上的一點(diǎn),且CD=1,求tan∠BAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知雙曲線C的方程為$\frac{x^2}{4}-\frac{y^2}{5}=1$,其左、右焦點(diǎn)分別是F1、F2.已知點(diǎn)M坐標(biāo)為(2,1),雙曲線C上點(diǎn) P(x0,y0)(x0>0,y0>0)滿足$\frac{{\overrightarrow{{P}{F_1}}•\overrightarrow{{M}{F_1}}}}{{|{\overrightarrow{{P}{F_1}}}|}}=\frac{{\overrightarrow{{F_2}{F_1}}•\overrightarrow{{M}{F_1}}}}{{|{\overrightarrow{{F_2}{F_1}}}|}}$,則${S_{△{P}{M}{F_1}}}-{S_{△{P}{M}{F_2}}}$=( 。
A.-1B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(文)已知等差數(shù)列{an}的首項(xiàng)為p,公差為d(d>0).對(duì)于不同的自然數(shù)n,直線x=an與x軸和指數(shù)函數(shù)f(x)=($\frac{1}{2}$)x的圖象分別交于點(diǎn)An與Bn(如圖所示),記Bn的坐標(biāo)為(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面積分別為s1和s2,一般地記直角梯形AnAn+1Bn+1Bn的面積為sn
(1)求證:數(shù)列{sn}是公比絕對(duì)值小于1的等比數(shù)列;
(2)設(shè)數(shù)列{an}的首項(xiàng)為p=-1,公差d=1,是否存在這樣的正整數(shù)n,構(gòu)成以bn,bn+1,bn+2為邊長(zhǎng)的三角形?并請(qǐng)說(shuō)明理由;
(3))設(shè){an}的公差d=1,是否存在這樣的實(shí)數(shù)p使得(1)中無(wú)窮等比數(shù)列{sn}各項(xiàng)的和S>2010?如果存在,給出一個(gè)符合條件的p值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案