17.命題“若x>1,則x2>1”的逆否命題是( 。
A.若x>1,則x2≤1B.若x2≤1,則x≤1C.若x≤1,則x2≤1D.若x<1,則x2<1

分析 根據(jù)命題“若p,則q”的逆否命題是“若¬q,則¬p”,寫(xiě)出即可.

解答 解:命題“若x>1,則x2>1”的逆否命題是
命題“若x2≤1,則x≤1”.
故選:B.

點(diǎn)評(píng) 本題考查了命題與逆否命題的關(guān)系與應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.定義在R上的函數(shù)f(x)滿足f(x)=f(2-x),當(dāng)x≠1時(shí),有xf′(x)>f(x)成立;若1<m<2,a=f(2m),b=f(2),c=f(log2m),則a,b,c大小關(guān)系為a>b>c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.5個(gè)大學(xué)生分配到三個(gè)不同的村莊當(dāng)村官,每個(gè)村莊至少有一名大學(xué)生,其中甲村莊恰有一名大學(xué)生的分法種數(shù)為( 。
A.14B.35C.70D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,若一幾何體的三視圖如圖所示,則此幾何體的體積是12,表面積是36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知數(shù)列{an}的前n項(xiàng)和Sn,且滿足:$\frac{1}{{{a_1}+1}}$+$\frac{2}{{{a_2}+1}}$+$\frac{3}{{{a_3}+1}}$+…+$\frac{n}{{{a_n}+1}}$=n,n∈N+
(1)求an
(2)設(shè)Tn=$\frac{1}{{{S_{n+1}}}}$+$\frac{1}{{{S_{n+2}}}}$+$\frac{1}{{{S_{n+3}}}}$+…+$\frac{1}{{{S_{2n}}}}$,是否存在整數(shù)m,使對(duì)任意n∈N+,不等式Tn≤m恒成立?若存在,求出m的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,點(diǎn)(1,$\frac{\sqrt{2}}{2}$)在C上.(1)求C的方程;
(2)過(guò)點(diǎn)M(0,-$\frac{1}{3}$)的動(dòng)直線L交橢圓C于A,B兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)頂點(diǎn)T,使得無(wú)論如何L轉(zhuǎn)動(dòng),以AB為直徑的圓恒過(guò)定點(diǎn)T?若存在,求出T點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.試探究:是否存在實(shí)數(shù)m,使得橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上有不同的兩點(diǎn)關(guān)于直線y=4x+m對(duì)稱?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若f(x)=x3-$\frac{1}{2}$x2-2x+c對(duì)x∈[-1,2],不等式f(x)<c2,恒成立,則c的取值范圍是c<-1或c>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知F1,F(xiàn)2分別為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),B為橢圓上頂點(diǎn),△BF1F2為正三角形,且P為橢圓上一點(diǎn),A(0,2$\sqrt{2}$)為橢圓外一點(diǎn),|PA|-|PF2|的最小值為-1,過(guò)點(diǎn)F2且垂直于x軸的直線交橢圓于C,D,直線l1:y=mx+n與圓x2+y2=3相切并且交橢圓于M,N(M,N在直線CD的兩側(cè))兩點(diǎn).
(1)求橢圓的方程.
(2)當(dāng)四邊形CMDN的面積最大時(shí),求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案