15.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,則“cosA=$\frac{c}$”是“△ABC為Rt△”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也必要條件

分析 由cosA=$\frac{c}$,利用余弦定理可得:b2+a2=c2,C=90°,△ABC為Rt△.反之不成立,例如A為直角,則cosA=0.

解答 解:cosA=$\frac{c}$⇒$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{c}$,化為:b2+a2=c2⇒C=90°,⇒△ABC為Rt△.
反之不成立,例如A為直角,則cosA=0≠$\frac{c}$.
∴“cosA=$\frac{c}$”是“△ABC為Rt△”的充分不必要條件.
故選:A.

點評 本題考查了余弦定理、勾股定理的逆定理、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.某班同學利用國慶節(jié)進行社會實踐,對[20,50]歲的臨汾市“低頭族”(低頭族電子產(chǎn)品而忽視人際交往的人群)人群隨是因使用機抽取1000人進行了一次調(diào)查,得到如下頻數(shù)分布表:
年齡段分組[20,25)[25,30)[30,35)[35,40)[40,45)[45,50]
頻數(shù)3003201601604020
(1)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估計[20,50]年齡段的“低頭族”的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)從年齡段在[25,35)的“低頭族”中采用分層抽樣法抽取6人接受采訪,并從6人中隨機選取2人作為嘉賓代表,求選取的2名嘉賓代表中恰有1人年齡在[25,30)歲的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如圖是一個幾何體的三視圖,則該幾何體的體積等于( 。
A.$\frac{1}{2}$B.$\frac{5}{6}$C.1D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖,等邊△ABC的邊長為2,△ADE也是等邊三角形且邊長為1,M為DE的中心,在△ABC所在平面內(nèi),△ADE繞A逆時針旋轉(zhuǎn)一周,$\overrightarrow{BD}$•$\overrightarrow{AM}$的最大值為( 。
A.$\frac{3}{4}$B.$\frac{3}{4}$+$\sqrt{3}$C.$\frac{3+\sqrt{3}}{4}$D.$\frac{3}{4}$+2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.為了得到函數(shù)y=sin x+cos x的圖象,可以將函數(shù)y=$\sqrt{2}$sinx的圖象( 。
A.向右平移$\frac{π}{12}$個單位B.向右平移$\frac{π}{4}$個單位
C.向左平移$\frac{π}{12}$個單位D.向左平移$\frac{π}{4}$個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.方程[x]=x+a有解([x]表示不大于x的最大整數(shù)),則參數(shù)a的取值集合是(  )
A.{a|0≤a<1}B.{a|-1<a≤0}C.{a|-1<a<1}D.{a|a∈R,a∉Z}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知等差數(shù)列{an}的前n項和為Sn,a1+a5=0,且a9=20.則S11=( 。
A.260B.220C.130D.110

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.定義在R上的奇函數(shù)f(x)滿足:①對任意x,都有f(x+3)=f(x)成立;②當$x∈[{0,\frac{3}{2}}]$時,f(x)=$\frac{3}{2}-|{\frac{3}{2}-2x}$|,則方程f(x)=$\frac{1}{|x|}$在區(qū)間[-4,4]上根的個數(shù)是5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x,x≥1}\\{\frac{1}{x-1},x<1}\end{array}\right.$,則f(f(2))等于( 。
A.3B.-3C.$\frac{1}{5}$D.-$\frac{1}{5}$

查看答案和解析>>

同步練習冊答案