已知函數(shù)f(x)=ax-1(x≥0)的圖象經(jīng)過(guò)點(diǎn)(2,
1
2
),其中a>0,a≠1.
(1)求a的值;
(2)求函數(shù)f(x)=a2x-ax-2+8,x∈[-2,1]的值域.
考點(diǎn):指數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)代入值計(jì)算即可,
(2)根據(jù)函數(shù)的單調(diào)性,即可求其值域.
解答: 解:(1)把(2,
1
2
)
代入f(x)=ax-1,得a=
1
2

(2)由(1)得f(x)=(
1
2
)2x-(
1
2
)x-2+8=[(
1
2
)
x
-2]2+4

∵x∈[-2,1]
(
1
2
)x∈[
1
2
,4]
,
當(dāng)(
1
2
)x=4
時(shí),f(x)max=8,當(dāng)(
1
2
)x=
1
2
時(shí),f(x)min=4
∴函數(shù)f(x)的值域?yàn)閇4,8].
點(diǎn)評(píng):本題主要考查了質(zhì)數(shù)函數(shù)的單調(diào)性和利用函數(shù)的最值求值域,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某隧道入口豎立著“限高4.5米”的警示牌,是指示司機(jī)要想安全通過(guò)隧道,應(yīng)使車載貨物高度h滿足關(guān)系為( 。
A、h<4.5
B、h>4.5
C、h≤4.5
D、h≥4.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F,M為上頂點(diǎn),O為坐標(biāo)原點(diǎn),若△OMF的面積為
1
2
,且橢圓的離心率為
2
2

(1)求橢圓的方程;
(2)是否存在直線l交橢圓于P,Q兩點(diǎn),且使點(diǎn)F為△PQM的垂心?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,BC=2,B=
π
3
,若△ABC的面積為
3
2
,求tanC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的二次方程anx2-an+1x+1=0(n∈N+)的兩根α,β滿足6α-2αβ+6β=3,且a1=1.
(1)試用an表示an+1
(2)求證:{an-
2
3
}是等比數(shù)列
(3)求數(shù)列的通項(xiàng)公式an
(4)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面四邊形ABCD的4個(gè)頂點(diǎn)都在球O的表面上,AB為球O的直徑,P為球面上一點(diǎn),且PO⊥平面ABCD,BC=CD=DA=2,點(diǎn)M為PA的中點(diǎn).
(1)證明:平面PBC∥平面ODM;
(2)求點(diǎn)A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù).
單位x(元)88.28.48.68.89
銷量y(件)908483807568
(1)若y與x的線性關(guān)系為:
y
=bx+250,求b.
(2)預(yù)計(jì)在今后的銷售中,銷量y與單價(jià)仍然服從(1)中的有關(guān)系,且該產(chǎn)品的成本為4元/件,為了使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=
1
2
(an2+an),an>0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=
n
2n-1
,數(shù)列{bn}的前n項(xiàng)和為Tn,是否存在正整數(shù)m,使得m≤Tn<m+3,對(duì)任意正整數(shù)n恒成立,若存在,求出m值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(-1)nM<2+
(-1)n+1
n
對(duì)n∈N*恒成立,則實(shí)數(shù)M的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案