分析 設(shè)外接圓的半徑為R,根據(jù)題意得15$\overrightarrow{AO}$+8$\overrightarrow{BO}$=-17$\overrightarrow{CO}$,兩邊平方得出$\overrightarrow{AO}$•$\overrightarrow{BO}$=0,即∠AOB=$\frac{π}{2}$,
再根據(jù)圓心角等于同弧所對的圓周的關(guān)系,得出角C的值.
解答 解:設(shè)外接圓的半徑為R,O為△ABC的外心,且15$\overrightarrow{AO}$+8$\overrightarrow{BO}$+17$\overrightarrow{CO}$=$\overrightarrow{0}$,
所以15$\overrightarrow{AO}$+8$\overrightarrow{BO}$=-17$\overrightarrow{CO}$,
∴(15$\overrightarrow{AO}$+8$\overrightarrow{BO}$)2=(17$\overrightarrow{OC}$)2,
∴289R2+240$\overrightarrow{AO}$•$\overrightarrow{BO}$=289R2,
∴$\overrightarrow{AO}$•$\overrightarrow{BO}$=0,
∴∠AOB=$\frac{π}{2}$,
根據(jù)圓心角與同弧所對的圓周角的關(guān)系,如圖所示:
所以△ABC中內(nèi)角C的值為$\frac{π}{4}$.
故答案為:$\frac{π}{4}$.
點評 本題主要考查了三角形外心的應用、向量在幾何中的應用等基礎(chǔ)知識,考查運算求解能力與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 64+8π | B. | 56+12π | C. | 32+8π | D. | 48+8π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 68 | B. | 72 | C. | 84 | D. | 90 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1±\sqrt{5}}{2}$ | B. | $\frac{\sqrt{5}±1}{2}$ | C. | $\frac{1+\sqrt{5}}{2}$ | D. | $\frac{\sqrt{5}-1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{6}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com