1.已知向量$\vec a=({-1,3})$,$\vec b=({x,-1})$,且$\vec a∥\vec b$,則x的值為$\frac{1}{3}$.

分析 根據(jù)平行向量或共線向量的坐標(biāo)交叉相乘差為0,構(gòu)造一個(gè)關(guān)于x的方程,解方程即可.

解答 解:∵向量$\vec a=({-1,3})$,$\vec b=({x,-1})$,且$\vec a∥\vec b$,
∴3x-(-1)•(-1)=0,
解得x=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點(diǎn)評(píng) 本題考查了平行向量與共線向量的坐標(biāo)表示與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知某產(chǎn)品的廣告費(fèi)用x(萬元)與銷售額y(萬元)所得的數(shù)據(jù)如表:經(jīng)分析,y與x有較強(qiáng)的線性相關(guān)性,且$\widehat{y}$=0.95x+$\widehat{a}$,則$\widehat{a}$等于( 。
x0134
y2.24.34.86.7
A.2.6B.2.4C.2.7D.2.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=log2(1+x)-log2(1-x),g(x)=log2(1+x)+log2(1-x).
(1)判斷函數(shù)f(x)奇偶性并證明;
(2)判斷函數(shù)f(x)單調(diào)性并用單調(diào)性定義證明;
(3)求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知2sinαtanα=3,且0<α<π.
(I)求α的值;
(Ⅱ)求函數(shù)f(x)=4cosxcos(x-α)在[0,$\frac{π}{4}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合A={x|a-1<x<a+1},B={x|0<x<3}.
(1)若a=0,求A∩B;
(2)若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知向量$\vec a$=(2,1),$\overrightarrow$=(1,-2),若m$\vec a+n\vec b$=(9,-8)(m,n∈R),則m+n的值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=ax3+bx-2,若f(-2)=4,則f(2)=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S3=-15,且a1+1,a2+1,a4+1成等比數(shù)列,公比不為1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{S}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.y=sinx的圖象與y=-sinx的圖象關(guān)于x軸,y軸對(duì)稱.
y=cosx的圖象與y=-cosx的圖象關(guān)于x對(duì)稱.

查看答案和解析>>

同步練習(xí)冊(cè)答案