對于函數(shù)f(x)=x3+2x-1能否給出一個區(qū)間[a,b],使得函數(shù)f(x)在(a,b)上有零點?
考點:利用導數(shù)研究函數(shù)的極值
專題:計算題,導數(shù)的概念及應用
分析:根據(jù)所給的函數(shù)和區(qū)間,利用實根存在性定理依次檢驗,當區(qū)間的兩個端點的函數(shù)值符號相反,就得到有零點的區(qū)間.
解答: 解:∵f(0)=-1,f(1)=2,
∴零點的一個區(qū)間為(0,1)
即函數(shù)f(x)在(0,1)上有零點
點評:本題考查函數(shù)的零點的判定定理,是一個基礎(chǔ)題,解題的關(guān)鍵是應用判定定理進行檢驗,一般不會出錯.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某初級中學共有學生2000名,各年級男、女生人數(shù)如表:
初一年級初二年級初三年級
女生373xy
男生377370z
已知在全校學生中隨機抽取1名,抽到初二年級女生的概率是0.19.
(1)求x的值;
(2)現(xiàn)用分層抽樣的方法在全校抽取48名學生,問應在初三年級抽取多少名?
(3)已知y≥245,z≥245,求初三年級中女生比男生多的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)集A={a2,2},B={1,2,3,2a-4},C={6a-a2-6},如果C⊆A,C⊆B,求a的取值的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x2+2y2=4x,求z=x2+y2的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

四棱錐P-ABCD中,底面ABCD是矩形,PA=AB=1,BC=2,PA⊥底面ABCD.
(1)求證:平面PDC⊥平面PAD;
(2)在邊BC上是否存在一點G,使得PD與平面PAG所成的正弦是
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的幾何體中,四邊形ABEF是長方形,DA⊥平面ABEF,BC∥AD,G,H分別為DF,CE的中點,且AD=AF=2BC.
(Ⅰ)求證:GH∥平面ABCD;
(Ⅱ)求三棱錐E-BCD與D-BEF的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={y|y=ax2+2x+2a}.
(1)若A⊆R+,求a的范圍;
(2)若A?{x|x≥2},求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:E、F是長方體ABCD-A1B1C1D1的棱A1A、C1C的中點,求證:四邊形B1EDF是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用定義證明f(x)=1-
1
x
在(-∞,0)上是增函數(shù).

查看答案和解析>>

同步練習冊答案