某人根據(jù)自己愛好,希望從{W,X,Y,Z}中選2各不同字母,從{0,2,6,8}中選3個不同數(shù)字編擬車牌號,要求前三位是數(shù)字,后兩位是字母,且數(shù)字2不能排在首位,字母Z和數(shù)字2不能相鄰,那么滿足要求的車牌號有( 。
A、198個B、180個
C、216個D、234個
考點:計數(shù)原理的應(yīng)用
專題:排列組合
分析:因為2,Z都是特殊元素,故需要對此進行分類,第一類,不選2時,第二類選2,不選Z時,第三類,先2不選Z時,根據(jù)分類計數(shù)原理可得.
解答: 解:不選2時,有
A
3
3
A
2
4
=72種,
選2,不選Z時,
C
1
2
C
2
3
A
2
2
A
2
3
=72種,
選2,選Z時,當2再數(shù)字的中間時
A
2
3
C
1
2
C
1
3
=36種,當2再數(shù)字的在數(shù)字的第三位時,
A
2
3
A
1
3
=18種,
根據(jù)分類計數(shù)原理,共有72+72+36+18=198,
故選:A
點評:本題考查了分類計數(shù)原理,關(guān)鍵是分類,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè) a=sin(-810°),b=tan(-
33π
8
),c=lge
,則它們的大小關(guān)系為( 。
A、a<b<c
B、a<c<b
C、b<c<a
D、c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=log 
1
4
(1-x)+log 
1
4
(x+3)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點為F1,F(xiàn)2,M是橢圓上任意一點,若以坐標原點為圓心,橢圓短軸長為直徑的圓恰好經(jīng)過橢圓的焦點,且MF1F2的周長為4+2
2

(1)求橢圓C的方程;
(Ⅱ)設(shè)直線l是圓O:x2+y2=
4
3
上動點P(x0,y0)(x0•y0≠0)處的切線,l與橢圓C交與不同的兩點Q,R,證明:∠QOR=
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:x2-3x+1=0,求
x2
x4+3x2+1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當a,b∈(0,+∞)時,aabb≥(ab) 
a+b
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率是
1
2
,其左、右頂點分別為A1,A2,B為短軸的一個端點,△A1BA2的面積為2
3

(1)求橢圓C的標準方程;
(2)直線l:x=2
2
與x軸交于點D,點P是橢圓C上異于A1,A2的動點,直線A1P,A2P分別交直線l于E,F(xiàn)兩點,證明:|DE|•|DE|恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的長軸長為4,離心率為
1
2
,左右焦點分別為F1,F(xiàn)2,
(1)求橢圓的方程;
(2)過F2的直線l與橢圓交于不同的兩點M、N,求△F1MN面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點,直線x=-
a2
c
與x軸相交于點N,并且滿足
F1F2
=2
NF1
,|
F1F2
|=2,設(shè)A,B是上半橢圓上滿足
NA
NB
,其中λ∈[
1
5
,
1
3
].
(1)求此橢圓的方程及直線AB的斜率的取值范圍;
(2)過A,B兩點分別作此橢圓的切線,兩切線相交于一點P,求證:點P在一條定直線上,并求點P的縱坐標的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案