3.設(shè)$\overrightarrow{a}$=(cos2θ,sinθ),$\overrightarrow$=(1,0),已知$\overrightarrow{a}$•$\overrightarrow$=$\frac{7}{25}$,且$θ∈(\frac{π}{2},π)$,則tanθ=( 。
A.$-\frac{9}{16}$B.$-\frac{3}{4}$C.$\frac{3}{4}$D.$±\frac{3}{4}$

分析 進(jìn)行數(shù)量積的坐標(biāo)運(yùn)算可得到cos2$θ=\frac{7}{25}$,這樣根據(jù)二倍角的余弦公式及θ的范圍便可求出sinθ,cosθ,從而可以得出tanθ.

解答 解:$\overrightarrow{a}•\overrightarrow=cos2θ=1-2si{n}^{2}θ=\frac{7}{25}$;
∴$si{n}^{2}θ=\frac{9}{25}$;
∵$θ∈(\frac{π}{2},π)$;
∴$sinθ=\frac{3}{5}$,$cosθ=-\frac{4}{5}$;
∴$tanθ=\frac{sinθ}{cosθ}=-\frac{3}{4}$.
故選B.

點(diǎn)評 考查向量數(shù)量積的坐標(biāo)運(yùn)算,二倍角的余弦公式,切化弦公式,清楚正弦函數(shù)、余弦函數(shù)在各象限的符號,要熟悉正余弦函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若角A是銳角,那么角A的余弦值是(  )
A.大于零B.小于零C.等于零D.都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知:如圖①,直線y=-$\sqrt{3}$x+$\sqrt{3}$與x軸、y軸分別交于A、B兩點(diǎn),兩動點(diǎn)D、E分別從A、B兩點(diǎn)同時(shí)出發(fā)向O點(diǎn)運(yùn)動(運(yùn)動到O點(diǎn)停止,如圖②);對稱軸過點(diǎn)A且頂點(diǎn)為M的拋物線y=a(x-k)2+h(a<0)始終經(jīng)過點(diǎn)E,過E作EG∥OA交拋物線于點(diǎn)G,交AB于點(diǎn)F,連結(jié)DE、DF、AG、BG,設(shè)D、E的運(yùn)動速度分別是1個(gè)單位長度/秒和$\sqrt{3}$個(gè)單位長度/秒,運(yùn)動時(shí)間為t秒.

(1)用含t代數(shù)式分別表示BF、EF、AF的長;
(2)當(dāng)t為何值時(shí),四邊形ADEF是菱形?
(3)當(dāng)△ADF是直角三角形,且拋物線的頂點(diǎn)M恰好在BG上時(shí),求拋物線的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,若Ω是長方體ABCD-A1B1C1D1被平面EFGH截去幾何體EFGHB1C1后得到的幾何體,其中E為線段A1B1上異于B1的點(diǎn),F(xiàn)為線段BB1上異于B1的點(diǎn),且EH∥A1D1,則下列結(jié)論中不正確的是( 。
A.EH∥FGB.四邊形EFGH是矩形
C.Ω是棱柱D.四邊形EFGH可能為梯形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在數(shù)列{an}中,a1=1,且an+1=$\frac{{a}_{n}+4}{{a}_{n}+1}$(n∈N*
(Ⅰ)求證:數(shù)列{$\frac{{a}_{n}+2}{{a}_{n}-2}$}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng);
(Ⅱ)求證:|a1-2|+|a2-2|+|a3-2|+…+|a2n-1-2|+|a2n-2|<$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.圓(x-1)2+(y+2)2=2的圓心到直線x-y=1的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)為奇函數(shù),當(dāng)x>0時(shí),f(x)=-6x+2x,則f(f(-1))=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.曲線C1上任意一點(diǎn)M滿足|MF1|+|MF2|=4,其中F1(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3}$,0)拋物線C2的焦點(diǎn)是直線y=x-1與x軸的交點(diǎn),頂點(diǎn)為原點(diǎn)O.
(1)求C1,C2的標(biāo)準(zhǔn)方程;
(2)請問是否存在直線l滿足條件:①過C2的焦點(diǎn)F;②與C1交于不同兩點(diǎn)M,N,且滿足$\overrightarrow{OM}$⊥$\overrightarrow{ON}$?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)x,y∈R,則x2(x-y)>0是x>y的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案