分析 先化簡已知,利用均值不等式得出tanα=$\frac{1}{\frac{1}{tanβ}+2tanβ}$≤$\frac{\sqrt{2}}{4}$,求出tanβ的值,進(jìn)而得出tanα的最大值,然后根據(jù)兩角和與差公式得出結(jié)果.
解答 解:∵α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),
∴tanα>0,tanβ>0,
∵tan(α+β)=2tanβ,可得:$\frac{tanα+tanβ}{1-tanαtanβ}$=2tanβ,
∴整理可得:tanα=$\frac{tanβ}{1+2ta{n}^{2}β}$=$\frac{1}{\frac{1}{tanβ}+2tanβ}$≤$\frac{1}{2\sqrt{2}}$=$\frac{\sqrt{2}}{4}$,
當(dāng)且僅當(dāng)$\frac{1}{tanβ}$=2tanβ,即tanβ=$\frac{\sqrt{2}}{2}$時(shí),tanαmax=$\frac{\sqrt{2}}{4}$,
此時(shí),可得:tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=$\frac{2×\frac{\sqrt{2}}{4}}{1-\frac{2}{16}}$=$\frac{{4\sqrt{2}}}{7}$.
故答案為:$\frac{{4\sqrt{2}}}{7}$.
點(diǎn)評 此題考查了兩角和與差公式、同角三角函數(shù)的基本關(guān)系,熟練掌握公式解題的關(guān)鍵,此題綜合性較強(qiáng),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 J | B. | 12 J | C. | 14 J | D. | 16 J |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 外切 | B. | 內(nèi)切 | C. | 相交 | D. | 相離 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com