9.計(jì)算:
(1)3-2+$({2\frac{7}{9}})^{\frac{1}{2}}$-${(\sqrt{2}-1)}^{0}$;
(2)${5}^{l{og}_{5}9}$+$\frac{1}{2}$log232-log3(log28)

分析 (1)利用指數(shù)的運(yùn)算法則求解即可.
(2)利用對(duì)數(shù)的運(yùn)算法則化簡(jiǎn)求解即可.

解答 (本題滿分14分)
解:(1)3-2+$({2\frac{7}{9}})^{\frac{1}{2}}$-${(\sqrt{2}-1)}^{0}$=$\frac{1}{9}$+$\frac{5}{3}$-1=$\frac{7}{9}$;
(2)${5}^{l{og}_{5}9}$+$\frac{1}{2}$log232-log3(log28)=9+$\frac{1}{2}×5$-1=$\frac{21}{2}$.

點(diǎn)評(píng) 本題考查有理指數(shù)冪的運(yùn)算法則以及對(duì)數(shù)的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.解答下列問題
(1)計(jì)算(-$\frac{7}{8}$)0+($\frac{1}{8}$)${\;}^{-\frac{1}{3}}$+$\root{4}{(3-π)^{4}}$的值;
(2)已知2a=5b=100,求$\frac{a+b}{ab}$ 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=${log_{0.5}}(4-3x-{x^2})$的遞增區(qū)間是$(-\frac{3}{2},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.用導(dǎo)數(shù)求單調(diào)區(qū)間
f(x)=$\frac{{x}^{2}+3x+1}{{x}^{2}+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=2x,若函數(shù)g(x)的圖象與f(x)的圖象關(guān)于x軸對(duì)稱,則g(x)=-2x;把函數(shù)f(x)的圖象向左移1個(gè)單位,向下移4個(gè)單位后,所得函數(shù)的解析式為y=2x+1-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.由五個(gè)面圍成的多面體,其中上、下兩個(gè)面是相似三角形,其余三個(gè)面都是梯形,并且這些梯形的腰延長(zhǎng)后能相交于一點(diǎn),則該多面體是(  )
A.三棱柱B.三棱臺(tái)C.三棱錐D.四棱錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.定義在R上的偶函數(shù)在區(qū)間(-∞,0]上單調(diào)遞增,解不等式:f(a+1)<f(a2+2a+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=-4x2+4ax-4a-a2,(a≠0).
(1)若a=-1,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[0,1]上的最大值為0,存在x∈[2,3],使得m(x2+2x)<f(x)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=2sin(kx+$\frac{π}{3}$)的周期為T,T∈(1,3),則正整數(shù)k=3,4,5,6.

查看答案和解析>>

同步練習(xí)冊(cè)答案