【題目】設(shè)平面內(nèi)的向量 , , ,點(diǎn)P在直線OM上,且 .
(1)求 的坐標(biāo);
(2)求∠APB的余弦值;
(3)設(shè)t∈R,求 的最小值.
【答案】
(1)解:∵點(diǎn)P在直線OM上,設(shè)
∴ ,
∴ ,解得 ,
∴ .
(2)解: , ,
∴
(3)解: ,
∴ =2(t﹣2)2+2.
當(dāng)t=2時(shí),( +t )2取得最小值2,
∴ 的最小值為 .
【解析】(1)根據(jù)P,O,M三點(diǎn)共線可設(shè) ,利用數(shù)量積公式列方程解出;(2)計(jì)算 的模長(zhǎng),代入向量夾角公式計(jì)算;(3)計(jì)算 2得到關(guān)于t的二次函數(shù),求出函數(shù)的最小值即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平面向量的坐標(biāo)運(yùn)算的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握坐標(biāo)運(yùn)算:設(shè),則;;設(shè),則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(示意),公路AM、AN圍成的是一塊頂角為α的角形耕地,其中tanα=-2.在該塊土地中P處有一小型建筑,經(jīng)測(cè)量,它到公路AM,AN的距離分別為3km,km.現(xiàn)要過(guò)點(diǎn)P修建一條直線公路BC,將三條公路圍成的區(qū)域ABC建成一個(gè)工業(yè)園.為盡量減少耕地占用,問(wèn)如何確定B點(diǎn)的位置,使得該工業(yè)園區(qū)的面積最。坎⑶笞钚∶娣e.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C1和雙曲線C2焦點(diǎn)相同,且離心率互為倒數(shù),F(xiàn)1 , F2它們的公共焦點(diǎn),P是橢圓和雙曲線在第一象限的交點(diǎn),當(dāng)∠F1PF2=60°時(shí),則橢圓C1的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線在直角坐標(biāo)系中的參數(shù)方程為為參數(shù), 為傾斜角),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,在極坐標(biāo)系中,曲線的方程為.
(1)寫(xiě)出曲線的直角坐標(biāo)方程;
(2)點(diǎn),若直線與曲線交于兩點(diǎn),求使為定值的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高三年級(jí)從甲(文)、乙(理)兩個(gè)科組各選出7名學(xué)生參加高校自主招生數(shù)學(xué)選拔考試,他們?nèi)〉玫某煽?jī)的莖葉圖如圖所示,其中甲組學(xué)生的平均分是85,乙組學(xué)生成績(jī)的中位數(shù)是83.
(1)求x和y的值;
(2)計(jì)算甲組7位學(xué)生成績(jī)的方差S2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)有100名學(xué)員參加交通法規(guī)考試,考試成績(jī)的頻率分布直方圖如圖所示.其中成績(jī)分組區(qū)間是:第1組:[75,80),第2組:[80,85),第3組:[85,90),第4組:[90,95),第5組:[95,100].
(1)求圖中a的值,并估計(jì)此次考試成績(jī)的中位數(shù)(結(jié)果保留一位小數(shù));
(2)在第2、4小組中用分層抽樣的方法抽取5人,再?gòu)倪@5人中隨機(jī)選取2人進(jìn)行面試,求至少有一人來(lái)自第2小組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的傾斜角;
(2)設(shè)點(diǎn),直線和曲線交于, 兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),直線.
(1)若直線與曲線相切,求切點(diǎn)橫坐標(biāo)的值;
(2)若函數(shù),求證: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com