【題目】已知橢圓的對稱中心為原點,焦點在軸上,焦距為,點在該橢圓上.
(1)求橢圓的方程;
(2)直線與橢圓交于兩點,點位于第一象限,是橢圓上位于直線兩側(cè)的動點.當(dāng)點運動時,滿足,問直線的斜率是否為定值,請說明理由.
【答案】(1);(2)
【解析】
(1)由題可得, 所以 ,則橢圓的方程為
(2)將代入橢圓方程可得,解得 ,則 ,由題可知直線與直線的斜率互為相反數(shù),寫出直線的方程與橢圓方程聯(lián)立整理可得。
(1)因為橢圓的對稱中心為原點,焦點在軸上,
所以設(shè)橢圓方程為
因為焦距為,
所以 ,焦點坐標(biāo) ,
又因為點在該橢圓上,代入橢圓方程得
所以 ,即
解得
所以
則橢圓的方程為.
(2)將代入橢圓方程可得,解得
則
當(dāng)點運動時,滿足,則直線與直線的斜率互為相反數(shù),
不妨設(shè),則,
所以直線的方程為,
聯(lián)立 ,解得
因為是該方程的兩根,
所以,即,
同理直線的方程為且
所以
所以 ,
即直線的斜率為定值。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線是平面內(nèi)到直線和直線的距離之積等于常數(shù)()的點的軌跡,下列四個結(jié)論:
①曲線過點;
②曲線關(guān)于點成中心對稱;
③若點在曲線上,點、分別在直線、上,則不小于;
④設(shè)為曲線上任意一點,則點關(guān)于直線,點及直線對稱的點分別為、、,則四邊形的面積為定值;
其中,所有正確結(jié)論的序號是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某學(xué)校研究性課題《什么樣的活動最能促進同學(xué)們進行垃圾分類》向題的統(tǒng)計圖(每個受訪者都只能在問卷的5個活動中選擇一個),以下結(jié)論錯誤的是( 。
A. 回答該問卷的總?cè)藬?shù)不可能是100個
B. 回答該問卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多
C. 回答該問卷的受訪者中,選擇“學(xué)校團委會宣傳”的人數(shù)最少
D. 回答該問卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公園為了美化環(huán)境和方便顧客,計劃建造一座圓弧形拱橋,已知該橋的剖面如圖所示,共包括圓弧形橋面和兩條長度相等的直線型路面、,橋面跨度的長不超過米,拱橋所在圓的半徑為米,圓心在水面上,且和所在直線與圓分別在連結(jié)點和處相切.設(shè),已知直線型橋面每米修建費用是元,弧形橋面每米修建費用是元.
(1)若橋面(線段、和弧)的修建總費用為元,求關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)為何值時,橋面修建總費用最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列滿足對任意的恒成立,為其前n項的和,且,.
(1)求數(shù)列的通項;
(2)數(shù)列滿足,其中.
①證明:數(shù)列為等比數(shù)列;
②求集合
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究高二階段男生、女生對數(shù)學(xué)學(xué)科學(xué)習(xí)的差異性,在高二年級所有學(xué)生中隨機抽取25名男生和25名女生,計算他們高二上學(xué)期期中、期末和下學(xué)期期中、期末的四次數(shù)學(xué)考試成績的各自的平均分,并繪制成如圖所示的莖葉圖.
(1)請根據(jù)莖葉圖判斷,男生組與女生組哪組學(xué)生的數(shù)學(xué)成績較好?請用數(shù)據(jù)證明你的判斷;
(2)以樣本中50名同學(xué)數(shù)學(xué)成績的平均分x0(79.68分)為分界點,將各類人數(shù)填入如下的列聯(lián)表:
分?jǐn)?shù) 性別 | 高于或等于x0 | 低于x0 | 合計 |
男生 | |||
女生 | |||
合計 |
(3)請根據(jù)(2)中的列聯(lián)表,判斷能否有99%的把握認為數(shù)學(xué)學(xué)科學(xué)習(xí)能力與性別有關(guān)?
附:K2=
P(K2≥k0) | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級如下表:
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:
(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品”的規(guī)定?
(2)在樣本中,按產(chǎn)品等級用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動,活動后再抽樣檢測,產(chǎn)品質(zhì)量指標(biāo)值近似滿足,則“質(zhì)量提升月”活動后的質(zhì)量指標(biāo)值的均值比活動前大約提升了多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論f(x)的單調(diào)性;
(2)證明:當(dāng)﹣1<a<0時,f(x)存在唯一的零點x0,且x0隨著a的增大而增大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,則實數(shù)a的取值范圍為( )
A. (0,1) B. C. D. (-∞,-2)∪(1,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com