(本小題滿分14分) 如圖,已知拋物線與坐標(biāo)軸分別交于A、B、C三點(diǎn),過(guò)坐標(biāo)原點(diǎn)O的直線與拋物線交于M、N兩點(diǎn).分別過(guò)點(diǎn)C、D作平行于軸的直線.(1)求拋物線對(duì)應(yīng)的二次函數(shù)的解析式;
(2)求證以O(shè)N為直徑的圓與直線相切;
(3)求線段MN的長(zhǎng)(用表示),并證明M、N兩
點(diǎn)到直線的距離之和等于線段MN的長(zhǎng).

(1) ;
(2)以O(shè)N為直徑的圓與直線相切. (3)MN兩點(diǎn)到距離之和等于線段MN的長(zhǎng).

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知橢圓C:(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為,直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M、N.
①求橢圓C的方程.
②當(dāng)⊿AMN的面積為時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)橢圓:的兩個(gè)焦點(diǎn)為,點(diǎn)在橢圓上,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過(guò)圓的圓心,交橢圓兩點(diǎn),且關(guān)于點(diǎn)對(duì)稱(chēng),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知?jiǎng)狱c(diǎn)與平面上兩定點(diǎn)、連線的斜率的積為定
.
(1)求動(dòng)點(diǎn)的軌跡方程;(2)設(shè)直線與曲線交于、兩點(diǎn),當(dāng)||=時(shí),求直線的方程. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分15分 )已知橢圓經(jīng)過(guò)點(diǎn),一個(gè)焦點(diǎn)是
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓軸的兩個(gè)交點(diǎn)為、,點(diǎn)在直線上,直線、分別與橢圓交于、兩點(diǎn).試問(wèn):當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),直線是否恒經(jīng)過(guò)定點(diǎn)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線3x2-y2=3,過(guò)點(diǎn)P(2,1)作一直線交雙曲線于A、B兩點(diǎn),若P為
AB的中點(diǎn),
(1)求直線AB的方程;
(2)求弦AB的長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)軸上,且焦距為,實(shí)軸長(zhǎng)為4
(Ⅰ)求橢圓的方程;
(Ⅱ)在橢圓上是否存在一點(diǎn),使得為鈍角?若存在,求出點(diǎn)的橫坐標(biāo)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,曲線與坐標(biāo)軸的交點(diǎn)都在圓上.
(1)求圓C的方程;
(2)若圓C與直線交于A,B兩點(diǎn),且求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知是雙曲線上不同的三點(diǎn),且連線經(jīng)過(guò)坐標(biāo)原點(diǎn),
若直線的斜率乘積,求雙曲線的離心率;

查看答案和解析>>

同步練習(xí)冊(cè)答案