1.調(diào)查某桑場(chǎng)采桑員和輔助工關(guān)于桑毛蟲皮炎發(fā)病情況結(jié)果如表:
 采桑不采桑合計(jì)
患者人數(shù)1812 
健康人數(shù)578 
合計(jì)   
(1)完成2×2列聯(lián)表;
(2)利用2×2列聯(lián)表的獨(dú)立性檢驗(yàn)估計(jì),“患桑毛蟲皮炎病與采!笔欠裼嘘P(guān)?
參考數(shù)據(jù)當(dāng)χ2≤2.706時(shí),無(wú)充分證據(jù)判定變量A,B有關(guān)聯(lián),可以認(rèn)為兩變量無(wú)關(guān)聯(lián);
當(dāng)χ2>2.706時(shí),有90%把握判定變量A,B有關(guān)聯(lián);
當(dāng)χ2>3.841時(shí),有95%把握判定變量A,B有關(guān)聯(lián);
當(dāng)χ2>6.635時(shí),有99%把握判定變量A,B有關(guān)聯(lián).
(參考公式:χ2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

分析 根據(jù)所給的數(shù)據(jù)完成列聯(lián)表,求得觀測(cè)值所用的數(shù)據(jù),把數(shù)據(jù)代入觀測(cè)值公式中,做出觀測(cè)值χ2,同臨界值表進(jìn)行比較,χ2≈39.6>6.635,有99%的把握認(rèn)為“桑葚毛蟲皮炎與采桑”有關(guān).

解答 解:完成2×2列聯(lián)表:

 采桑不采桑合計(jì)
患者人數(shù)181230 
健康人數(shù)578 83
合計(jì) 2390  
χ2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{113×(18×78-5×12)^{2}}{30×83×23×90}$≈39.6>6.635,
∴有99%的把握認(rèn)為“桑葚毛蟲皮炎與采!庇嘘P(guān).

點(diǎn)評(píng) 本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.將語(yǔ)文、數(shù)學(xué)、物理、化學(xué)四本書任意地排放在書架的同一層上,計(jì)算:
(1)語(yǔ)文書在數(shù)學(xué)書的左邊的概率是多少?
(2)化學(xué)書在語(yǔ)文書的右邊,語(yǔ)文書在物理書的右邊的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.當(dāng)a<0時(shí),函數(shù)y=$\frac{1}{3}$x3-ax2-3a2x-4在(2,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(-2,0)B.[-2,0)C.[-2,1]D.(-2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)y=sinx+$\sqrt{3}$cosx的最小值為( 。
A.1B.2C.$\sqrt{3}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,在四棱錐E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(Ⅰ)求證:平面ACE⊥平面CDE;
(Ⅱ)求平面CED與平面BEC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列函數(shù)中,最小正周期為$\frac{π}{2}$的是(  )
A.y=sinxB.y=cosxC.y=tan$\frac{x}{2}$D.y=cos4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列函數(shù)中,最小正周期為$\frac{π}{2}$的是(  )
A.y=sin$\frac{x}{2}$B.y=2sinxC.y=sin4πD.y=sin(-4x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$(a>0,a≠1).
(Ⅰ)判斷f(x)的奇偶性;
(Ⅱ)求使f(x)>$\frac{1}{2}$的x取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某中學(xué)在高三年級(jí)開設(shè)大學(xué)先修課程(線性代數(shù)),共有50名同學(xué)選修,其中男同學(xué)30名,女同學(xué)20名.為了對(duì)這門課程的數(shù)學(xué)效果進(jìn)行評(píng)估,學(xué)校按性別分別采用分成抽樣的方法抽取5人進(jìn)行考核.
(1)求抽取的5人中男、女同學(xué)的人數(shù);
(2)考核的第一輪是答辯,順序由已抽取的甲、乙等5位同學(xué)按抽簽方式?jīng)Q定.設(shè)甲、乙兩位同學(xué)間隔的人數(shù)為X,X的分布列為
X3210
P$\frac{1}{10}$b$\frac{3}{10}$a
求數(shù)學(xué)期望EX;
(3)考核的第二輪是筆試:5位同學(xué)的筆試成績(jī)分別為115,122,105,111,109;結(jié)合第一輪的答辯情況,他們的考核成績(jī)分別為125,132,115,121,119.這5位同學(xué)筆試成績(jī)與考核成績(jī)的方差分別記為s12,s22,試比較s12與s22的大。ㄖ恍鑼懗鼋Y(jié)論)

查看答案和解析>>

同步練習(xí)冊(cè)答案