5.(1-2x)6=a0+a1x+a2x2+…+a6x6,則|a0|+|a1|+|a2|+…+|a6|=729.

分析 解由(1-2x)6=a0+a1x+a2x2+…+a6x6,可得:a1,a3,a5<0,a0,a2,a4,a6>0.令x=-1,即可得出.

解答 解:由(1-2x)6=a0+a1x+a2x2+…+a6x6,可得:a1,a3,a5<0,a0,a2,a4,a6>0.
令x=-1,可得|a0|+|a1|+|a2|+…+|a6|=36=729.
故答案為:729.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖所示,4個(gè)小動(dòng)物換座位,開(kāi)始時(shí)鼠,猴,兔,貓分別坐1,2,3,4號(hào)座位,如果第1次前后排動(dòng)物互換座位,第2次左右列動(dòng)物互換座位,第3次前后排動(dòng)物互換座位,…,這樣交替進(jìn)行下去,那么第2 015次互換座位后,小兔坐在(  )號(hào)座位上.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知過(guò)拋物線G:y2=2px(p>0)焦點(diǎn)F的直線l與拋物線G交于M,N兩點(diǎn)(M點(diǎn)在x軸上方),滿足$\overrightarrow{MF}$=3$\overrightarrow{FN}$,|MN|=$\frac{16}{3}$,則以M為圓心且與拋物線準(zhǔn)線相切的圓的標(biāo)準(zhǔn)方程為( 。
A.(x-$\frac{1}{3}$)2+(y-$\frac{2\sqrt{3}}{3}$)2=$\frac{16}{3}$B.(x-$\frac{1}{3}$)2+(y+$\frac{2\sqrt{3}}{3}$)2=$\frac{16}{3}$
C.(x-3)2+(y-2$\sqrt{3}$)2=16D.(x-3)2+(y+2$\sqrt{3}$)2=16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如果冪函數(shù)y=(m2-3m+3)${x^{\frac{{{m^2}-m-2}}{2}}}$的圖象不過(guò)原點(diǎn),則m取值是( 。
A.m=1B.m=2C.-1≤m≤2D.m=1,或m=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=xex-k(x+1)2,(k∈R)
(1)k=$\frac{e}{2}$時(shí),求f(x)的單調(diào)區(qū)間和極值;
(2)若f(x)在R上只有一個(gè)零點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在正三棱柱ABC-A1B1C1中,D是AC的中點(diǎn),AB1⊥BC1,則平面DBC1與平面CBC1所成的角為(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.直線y=x-1被拋物線y2=8x截得線段的中點(diǎn)縱坐標(biāo)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若函數(shù)f(x)=x2-(m-1)x+1為偶函數(shù),則f(m)=(  )
A.m+1B.3C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)命題p:方程$\frac{{x}^{2}}{1-2m}$+$\frac{{y}^{2}}{m+2}$=1表示雙曲線;命題q:?x0∈R,x02+2mx0+2-m=0
已知“p∨q”為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案