13.我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過x的部分按平價收費,超出x的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)x(噸),估計x的值,并說明理由.

分析 (Ⅰ)根據(jù)各組的累積頻率為1,構(gòu)造方程,可得a值;
(Ⅱ)由圖可得月均用水量不低于3噸的頻率,進(jìn)而可估算出月均用水量不低于3噸的人數(shù);
(Ⅲ)由圖可得月均用水量低于2.5噸的頻率及月均用水量低于3噸的頻率,進(jìn)而可得x值.

解答 解:(Ⅰ)∵0.5×(0.08+0.16+0.4+0.52+0.12+0.08+0.04+2a)=1,
∴a=0.3;
(Ⅱ)由圖可得月均用水量不低于3噸的頻率為:0.5×(0.12+0.08+0.04)=0.12,
由30×0.12=3.6得:全市居民中月均用水量不低于3噸的人數(shù)約為3.6萬;
(Ⅲ)由圖可得月均用水量低于2.5噸的頻率為:0.5×(0.08+0.16+0.3+0.4+0.52)=0.73<85%;
月均用水量低于3噸的頻率為:0.5×(0.08+0.16+0.3+0.4+0.52+0.3)=0.88>85%;
則x=2.5+0.5×$\frac{0.85-0.73}{0.3×0.5}$=2.9噸

點評 本題考查的知識點是頻率分布直方圖,用樣本估計總體,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如果實數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-3≤0}\\{x-2y-3≤0}\\{x≥1}\end{array}\right.$,目標(biāo)函數(shù)z=2x+y的最大值6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)求7C${\;}_{6}^{3}$-4C${\;}_{7}^{4}$的值;
(2)設(shè)m,n∈N*,n≥m,求證:(m+1)C${\;}_{m}^{m}$+(m+2)C${\;}_{m+1}^{m}$+(m+3)C${\;}_{m+2}^{m}$+…+nC${\;}_{n-1}^{m}$+(n+1)C${\;}_{n}^{m}$=(m+1)C${\;}_{n+2}^{m+2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}的首項為1,Sn為數(shù)列{an}的前n項和,Sn+1=qSn+1,其中q>0,n∈N+
(Ⅰ)若a2,a3,a2+a3成等差數(shù)列,求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)雙曲線x2-$\frac{{y}^{2}}{{{a}_{n}}^{2}}$=1的離心率為en,且e2=2,求e12+e22+…+en2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)O為坐標(biāo)原點,P是以F為焦點的拋物線y2=2px(p>0)上任意一點,M是線段PF上的點,且|PM|=2|MF|,則直線OM的斜率的最大值為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{2}{3}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.閱讀如圖的程序圖,運行相應(yīng)的程序,則輸出S的值為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(-∞,0)上單調(diào)遞增,若實數(shù)a滿足f(2|a-1|)>f(-$\sqrt{2}$),則a的取值范圍是($\frac{1}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若z=4+3i,則$\frac{\overline{z}}{|z|}$=(  )
A.1B.-1C.$\frac{4}{5}$+$\frac{3}{5}$iD.$\frac{4}{5}$-$\frac{3}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在($\root{3}{x}$-$\frac{2}{x}$)n的二項式中,所有的二項式系數(shù)之和為256,則常數(shù)項等于112.

查看答案和解析>>

同步練習(xí)冊答案