A. | 13 | B. | 3 | C. | 52 | D. | 53 |
分析 由題意可得,數(shù)列{${a}_{n}+\frac{1}{3}$}是以$\frac{5}{6}$為首項,以4為公比的等比數(shù)列,然后結合等比數(shù)列的通項公式得答案.
解答 解:由an=4an-1+1,得${a}_{n}+\frac{1}{3}=4({a}_{n-1}+\frac{1}{3})$,
∵${a}_{1}+\frac{1}{3}=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}≠0$,
∴數(shù)列{${a}_{n}+\frac{1}{3}$}是以$\frac{5}{6}$為首項,以4為公比的等比數(shù)列,
則${a}_{4}+\frac{1}{3}=\frac{5}{6}×{4}^{3}=\frac{160}{3}$,得a4=59.
故選:D.
點評 本題考查數(shù)列遞推式,考查了等比關系的確定,訓練了等比數(shù)列通項公式的求法,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | b>c>a | B. | c>a>b | C. | a>b>c | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1 | B. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 | C. | $\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1 | D. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com