3.在△ABC中,若c=2,b=2a,且cosC=$\frac{1}{4}$,則a等于(  )
A.2B.$\frac{1}{2}$C.1D.$\frac{1}{3}$

分析 直接利用余弦定理求解.

解答 解:在△ABC中,c=2,b=2a,且cosC=$\frac{1}{4}$,
由余弦定理得:cosC=$\frac{1}{4}=\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}=\frac{{a}^{2}+4{a}^{2}-4}{4{a}^{2}}$,
解得:a=1.
故選:C.

點評 本題考查余弦定理的應(yīng)用,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,在△ABC中,點D是BC上一點,且$\overrightarrow{BD}$=λ$\overrightarrow{DC}$,過點D的直線分別交直線AB、AC于不同的兩點M、N,若$\overrightarrow{AB}$=$\frac{1}{2}$$\overrightarrow{AM}$,$\overrightarrow{AC}$=$\frac{3}{2}$$\overrightarrow{AN}$,則λ的值為(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若2cos(θ-$\frac{π}{3}$)=3cosθ,則tanθ=( 。
A.$\frac{2}{3}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.函數(shù)f(x)=-$\frac{1}{2}$-$\frac{a}{4}$+acosx+sin2x(0≤x≤$\frac{π}{2}$)的最大值為2,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若f(x)=2cos(2x+φ)(φ>0)的圖象關(guān)于直線x=$\frac{π}{3}$對稱,且當(dāng)φ取最小值時,?x0∈(0,$\frac{π}{2}$),使得f(x0)=a,則a的取值范圍是( 。
A.(-1,2]B.[-2,-1)C.(-1,1)D.[-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x≥1\\ x+y≤3\\ x-2y-3≤0\end{array}\right.$,則z=2x+y的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則f(0)=(  )
A.-$\sqrt{3}$B.-$\frac{\sqrt{3}}{2}$C.-1D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知角α終邊逆時針旋轉(zhuǎn)$\frac{π}{6}$與單位圓交于點$(\frac{{3\sqrt{10}}}{10},\frac{{\sqrt{10}}}{10})$,且$tan(α+β)=\frac{2}{5}$.
(1)求$sin(2α+\frac{π}{6})$的值,
(2)求$tan(2β-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“mn<0”是“方程mx2+ny2=1表示焦點在y軸上的雙曲線”的(  )
A.充分必要條件B.既不充分也不必要條件
C.充分而不必要條件D.必要而不充分條件

查看答案和解析>>

同步練習(xí)冊答案