13.變量x、y滿足條件$\left\{\begin{array}{l}{x-4y+2≤0}\\{x+y+2≥0}\\{3x-2y-4≤0}\end{array}\right.$,則$\sqrt{{(x-1)}^{2}{+(y-2)}^{2}}$+$\sqrt{{(x+2)}^{2}{+(y+1)}^{2}}$的最小值為( 。
A.2$\sqrt{5}$+2B.$\sqrt{17}$+$\sqrt{5}$C.$\sqrt{13}$+1D.3$\sqrt{2}$

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用兩點(diǎn)間的距離公式進(jìn)行求解即可.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖,
設(shè)E(1,2),F(xiàn)(-2,-1),
則$\sqrt{{(x-1)}^{2}{+(y-2)}^{2}}$+$\sqrt{{(x+2)}^{2}{+(y+1)}^{2}}$的幾何意義是區(qū)域內(nèi)的點(diǎn)到E,F(xiàn)兩點(diǎn)間的距離之和,
由圖象知$\sqrt{{(x-1)}^{2}{+(y-2)}^{2}}$+$\sqrt{{(x+2)}^{2}{+(y+1)}^{2}}$的最小值為|EF|=$\sqrt{(-2-1)^{2}+(-1-2)^{2}}$=$\sqrt{9+9}$=3$\sqrt{2}$,
故選:D.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用兩點(diǎn)間的距離公式,利用數(shù)形結(jié)合以及轉(zhuǎn)化法是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.
(1)若函數(shù)h(x)=f(x)-g(x)在[-2,0]上有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)若存在x0∈R,使得f(x0)≤0與g(x0)≤0同時(shí)成立,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知a=2lg3,b=3lg2,c=10lg2•lg3,則a,b,c大小關(guān)系為( 。
A.a=c>bB.a=b>cC.a<b=cD.a=b=c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖,AB是拋物線y2=2px(p>0)的一條經(jīng)過焦點(diǎn)F的弦,AB與兩坐標(biāo)軸不垂直,已知點(diǎn)M(-1,0),∠AMF=∠BMF,則p的值是( 。
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)復(fù)數(shù)z=($\frac{a+i}{1+i}$)2,其中a為正實(shí)數(shù),若|z|=2,則$\overline{z}$的虛部為(  )
A.-4B.4C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知平面向量$\overrightarrow{a}$=($\sqrt{3}$sinx,-1),$\overrightarrow$=(2cosx,1-2cos2x),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求函數(shù)f(x)的最小正周期,并寫出f(x)的對(duì)稱軸方程;
(2)當(dāng)x∈(-$\frac{5π}{6}$,-$\frac{π}{3}$)時(shí),設(shè)經(jīng)過函數(shù)f(x)圖象上任意不同兩點(diǎn)的直線的斜率為k,試判斷k的符號(hào),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.“點(diǎn)A的坐標(biāo)是(kπ,0),k∈Z”是“y=tanx關(guān)于點(diǎn)A對(duì)稱”的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)集合A={1,3,x},B={1,x2-x+1},求A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.sin(19π+$\frac{π}{3}$)的值是( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案