分析 由f(x)為奇函數(shù),則f(-x)=-f(x),$f(sin\frac{13π}{6})$=f($\frac{1}{2}$)=-f(-$\frac{1}{2}$),再由已知解析式,計算即可得到.
解答 解:f(x)是定義在R上的奇函數(shù),則有f(-x)=-f(x),
則$f(sin\frac{13π}{6})$=f($\frac{1}{2}$)=-f(-$\frac{1}{2}$),
當(dāng)x<0時,f(x)=3x,
即有f(-$\frac{1}{2}$)=$\frac{\sqrt{3}}{3}$,
則f(sin$\frac{π}{6}$)=$-\frac{{\sqrt{3}}}{3}$.
故答案為:$-\frac{{\sqrt{3}}}{3}$.
點(diǎn)評 本題考查函數(shù)的奇偶性的運(yùn)用:求函數(shù)值,考查特殊角的三角函數(shù)值,運(yùn)用奇偶性的定義是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≤1 | B. | a≥1 | C. | a≤2 | D. | a≥2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2019 | B. | 2020 | C. | 2021 | D. | 2022 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充分又不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 8 | C. | 10 | D. | 14 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i | B. | -$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i | C. | $\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i | D. | $\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com