已知角α終邊上一點(diǎn)P的坐標(biāo)是(-2sin3,-2cos3),則sinα=( 。
A、-cos3B、cos3
C、-sin3D、sin3
考點(diǎn):任意角的三角函數(shù)的定義
專題:計(jì)算題
分析:直接利用任意角的三角函數(shù)三角函數(shù)的定義,求出sinα的值即可.
解答: 解:因?yàn)榻铅恋慕K邊過點(diǎn)P(-2sin3,-2cos3),所以r=
(-2sin3)2+(-2cos3)2
=2,
由任意角的三角函數(shù)的定義可知:sinα=
-2cos3
2
=-cos3.
故選:A.
點(diǎn)評:本題考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

所示四個圖中,函數(shù)y=
ln|x+1|
x+1
的圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x+2
x+1

(1)利用函數(shù)單調(diào)性定義判斷f(x)在區(qū)間(-1,+∞)上的單調(diào)性,并給出證明;
(2)求出函數(shù)f(x)在區(qū)間[2,6]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sinα=
4
5
,且α是第二象限角,則tanα的值為( 。
A、-
4
3
B、
3
4
C、
 
+
-
3
4
D、
 
+
-
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是R上的偶函數(shù),且當(dāng)x∈(0,+∞)時,f(x)=x(1+
3x
),則當(dāng)x∈(-∞,0)時,f(x)等于( 。
A、x(1+
3x
B、-x(1+
3x
C、-x(1-
3x
D、x(1-
3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:log381=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a=1”是“f(x)=sin2x+acos2x的一條對稱軸是x=
π
8
”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A⊆[0,2π],集合{y|y=2sinx,x∈A}={-1,0,1},則不同集合A的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M為橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點(diǎn),F(xiàn)1、F2是兩焦點(diǎn),且∠MF1F2=2α,∠MF2F1=α,(α≠0),則橢圓的離心率是(  )
A、1-2sinα
B、2cosα-1
C、1-cos2α
D、1-sin2α

查看答案和解析>>

同步練習(xí)冊答案