19.已知數(shù)列{an}是等差數(shù)列,且滿足:a1+a2+a3=6,a5=5.
(Ⅰ)求an
(Ⅱ)記數(shù)列cn=$\frac{2}{{{a_{n+1}}{a_{n+2}}}}$(n∈N*),若{cn}的前n項(xiàng)和為T(mén)n,求Tn

分析 (Ⅰ)根據(jù)等差數(shù)列的定義構(gòu)成方程組,即可求{an}的通項(xiàng)公式;
(Ⅱ)求出求數(shù)列{cn}的通項(xiàng)公式,利用裂項(xiàng)法即可求前n項(xiàng)和Sn

解答 解:(Ⅰ)∵數(shù)列{an}是等差數(shù)列,且a1+a2+a3=6,a5=5,
∴$\left\{\begin{array}{l}3{a_1}+3d=6\\{a_1}+4d=5\end{array}\right.⇒\left\{\begin{array}{l}{a_1}=1\\ d=1\end{array}\right.$,
∴an=n,
(Ⅱ)∵${c_n}=\frac{2}{{{a_{n+1}}{a_{n+2}}}}=\frac{2}{(n+1)•(n+2)}=2•(\frac{1}{n+1}-\frac{1}{n+2})$,
∴${T_n}=2(\frac{1}{2}-\frac{1}{3})+2(\frac{1}{3}-\frac{1}{4})+2(\frac{1}{3}-\frac{1}{4})+…+2(\frac{1}{n}-\frac{1}{n+1})+2(\frac{1}{n+1}-\frac{1}{n+2})$=$2(\frac{1}{2}-\frac{1}{n+2})=1-\frac{2}{n+2}=\frac{n}{n+2}$

點(diǎn)評(píng) 本題主要考查等差數(shù)列的通項(xiàng)公式的求解,以及利用裂項(xiàng)法進(jìn)行求和,考查學(xué)生的計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知sin2α=$\frac{1}{2}$,且α∈(0,$\frac{π}{4}$),則sinα-cosα等于( 。
A.$\frac{1}{2}$B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知a1=2,an+1=$\frac{n+1}{n}{a_n}$,則a2016=( 。
A.504B.1008C.2016D.4032

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在平面直角坐標(biāo)系xOy中,已知直線l:x+y+a=0與點(diǎn)A(2,0),若直線l上存在點(diǎn)M滿足|MA|=2|MO|(O為坐標(biāo)原點(diǎn)),則實(shí)數(shù)a的取值范圍是[$\frac{2-4\sqrt{2}}{3}$,$\frac{2+4\sqrt{2}}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.將兩顆骰子各擲一次,設(shè)事件A=“兩個(gè)點(diǎn)數(shù)不相同”,B=“出現(xiàn)一個(gè)5點(diǎn)或6點(diǎn)”,則概率P(A|B)等于( 。
A.$\frac{10}{11}$B.$\frac{9}{10}$C.$\frac{17}{19}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.口袋里裝有大小相同的若干個(gè)小球,其中紅球3個(gè),藍(lán)球2個(gè),黃球m個(gè),黑球1個(gè).
(1)從中取出2個(gè)球,這2個(gè)球至少有1個(gè)紅球的概率為$\frac{9}{14}$,求m;
(2)在(1)條件下,從中取出3個(gè)球,設(shè)紅球的個(gè)數(shù)為ξ,求隨機(jī)變量ξ的分布列、數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.利用直線的參數(shù)方程,求直線l:4x-y-4=0與l1:x-2y-2=0及l(fā)2:4x+3y-12=0所得兩交點(diǎn)間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若a9+a13=8-ka11,S21=21,則k=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=ax2-(a+1)x+2(a∈R).
(I)當(dāng)a=2時(shí),解不等式f(x)>1;
(Ⅱ)若對(duì)任意x∈[-1,3],都有f(x)≥0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案