A. | 1或-2 | B. | 1 | C. | -2 | D. | 0 |
分析 當(dāng)m=0時(shí),顯然l1與l2不平行. 當(dāng)m≠0時(shí),可得$\frac{1}{m}=\frac{1+m}{2}≠\frac{2-m}{16}$,進(jìn)而求出m的值.
解答 解:兩條直線 l1:x+(1+m)y=2-m,l2:mx+2y=16.
當(dāng)m=0時(shí),顯然l1與l2不平行.
當(dāng)m≠0時(shí),
因?yàn)閘1∥l2,
所以 $\frac{1}{m}=\frac{1+m}{2}≠\frac{2-m}{16}$,
解得 m=1或-2.
故選:A.
點(diǎn)評(píng) 本題考查兩直線平行的充要條件,等價(jià)轉(zhuǎn)化是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}]$ | B. | $[\frac{1}{2},\frac{{\sqrt{2}}}{2}]$ | C. | $[-\frac{1}{2},\frac{1}{2}]$ | D. | $[-\frac{{\sqrt{2}}}{2},\frac{1}{2}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com