19.端午節(jié)放假,甲回老家過節(jié)的概率為$\frac{1}{3}$,乙、丙回老家過節(jié)的概率分別為$\frac{1}{4}$,$\frac{1}{5}$.假定三人的行動相互之間沒有影響,那么這段時間內(nèi)至少1人回老家過節(jié)的概率為( 。
A.$\frac{59}{60}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{1}{60}$

分析 這段時間內(nèi)至少1人回老家過節(jié)的對立事件是這段時間沒有人回老家過節(jié),由此能求出這段時間內(nèi)至少1人回老家過節(jié)的概率.

解答 解:端午節(jié)放假,甲回老家過節(jié)的概率為$\frac{1}{3}$,乙、丙回老家過節(jié)的概率分別為$\frac{1}{4}$,$\frac{1}{5}$.
假定三人的行動相互之間沒有影響,
這段時間內(nèi)至少1人回老家過節(jié)的對立事件是這段時間沒有人回老家過節(jié),
∴這段時間內(nèi)至少1人回老家過節(jié)的概率為:
p=1-(1-$\frac{1}{3}$)(1-$\frac{1}{4}$)(1-$\frac{1}{5}$)=$\frac{3}{5}$.
故選:B.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意對立事件概率計算公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知△ABC,其中頂點坐標(biāo)分別為A(-1,1),B(1,2),C(-2,-1),點D為邊BC的中點,則向量$\overrightarrow{AD}$在向量$\overrightarrow{AB}$方向上的投影為$\frac{\sqrt{5}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若關(guān)于x的不等式x2-2ax-8a2<0的解集為(x1,x2),且x2-x1=15,則a=( 。
A.$\frac{5}{2}$B.$-\frac{5}{2}$C.$±\frac{15}{4}$D.$±\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知復(fù)數(shù)z=(3-2i)2+2i(i為虛數(shù)單位),則z虛部為-10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知正方形的邊長為1,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{BC}=\overrightarrow b,\overrightarrow{AC}=\overrightarrow c$,則$|{\overrightarrow a+\overrightarrow b+\overrightarrow c}|$等于( 。
A.0B.3C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在正方體ABCD-A1B1C1D1中,若E為AB的中點,則A1E與CD1所成角的余弦值(  )
A.$\frac{{\sqrt{10}}}{10}$B.$\frac{{3\sqrt{10}}}{10}$C.$\frac{1}{10}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)$f(x)=\sqrt{3-|x|}+lg\frac{{{x^2}-3x+2}}{x-2}$的定義域為(1,2)∪(2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在平面直角坐標(biāo)系中,不等式組$\left\{\begin{array}{l}{y≥0}&{\;}\\{x+3y≤4}&{\;}\\{3x+y≥4}&{\;}\end{array}\right.$表示的平面區(qū)域的面積是(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}x-[x],x≥0\\ f(x+1)\;,x<0\end{array}\right.$其中[x]表示不超過x的最大整數(shù)如[-1.5]=-2,[2.5]=2,若直線y=k(x-1)(k<0)與函數(shù)y=f(x)的圖象只有三個不同的交點,則k的取值范圍為( 。
A.$[-\frac{1}{2},-\frac{1}{3}]$B.$(-\frac{1}{2},-\frac{1}{3})$C.$(-1,-\frac{1}{2}]$D.$(-1,-\frac{1}{2})$

查看答案和解析>>

同步練習(xí)冊答案