A. | 2 | B. | $\frac{5}{9}$ | C. | $-\frac{7}{3}$ | D. | $\frac{5}{2}$ |
分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=x-2y,得y=$\frac{1}{2}x-\frac{z}{2}$,
平移直線y=$\frac{1}{2}x-\frac{z}{2}$,由圖象可知當(dāng)直線y=$\frac{1}{2}x-\frac{z}{2}$經(jīng)過(guò)點(diǎn)A時(shí),直線y=$\frac{1}{2}x-\frac{z}{2}$的截距最小,
此時(shí)z最大,
由$\left\{\begin{array}{l}{3x-2=0}\\{3y+2=0}\end{array}\right.$,解$\left\{\begin{array}{l}{x=\frac{2}{3}}\\{y=-\frac{2}{3}}\end{array}\right.$,
即A($\frac{2}{3}$,-$\frac{2}{3}$),
此時(shí)zmax=$\frac{2}{3}$-2•(-$\frac{2}{3}$)=2,
故選:A.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,作出平面區(qū)域,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)>1 | B. | 0<f(x)<1 | C. | $1<f(x)<\frac{3}{2}$ | D. | $0<f(x)<\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [1,3] | B. | $({-∞,\frac{1}{3}}]$ | C. | $({\frac{1}{3},\frac{2}{3}}]$ | D. | $({\frac{2}{3},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com